#Policy

Topic within Energy
Eva Koops, posted

Energie Transitie Campus Amsterdam: stimulering open innovatie. Ga mee met Campus Amsterdam op 28 juni

Featured image

Op 2 juni is de Energy Transition Campus Amsterdam officieel geopend.

De recente opening van de Energie Transitie Campus Amsterdam zorgt voor een nieuwe vestiging in de stad die samenwerking en open #innovatie rondom de #energietransitie wil stimuleren. De campus is opengegaan voor startups, scale-ups, onderzoeksinstellingen en bedrijven die samen willen werken aan oplossingen voor schonere energie. Maar wat komt erbij kijken in de transitie naar een open innovatiecampus? Welke partijen worden betrokken om op de niveaus van innovatie, samenwerking en maatschappelijke meerwaarde bij te dragen aan de enorme energietransitie waar we voor staan. Hoe gaan andere campussen om met open innovatie, en wat betekent dit voor de regio?

Kom op 28 juni samen met Campus Amsterdam een kijkje nemen bij de nieuwe Energie Transitie Campus Amsterdam, inclusief lab tour. Leer meer over de transitie naar een open innovatie campus en hoe de campussen in de Metropoolregio (MRA) een broedplaats zijn voor (nieuwe) bedrijven.

Meld je aan voor 21 juni 👉 https://lnkd.in/ej_Jnkju

Meet-up on Jun 28th
Philippos Papadopoulos, Founder , posted

Equinox, the open source platform supporting green public procurement enters the EU Datathon 22 competition phase

Featured image

The Equinox platform is a versatile, cloud based, framework that
supports sustainable portfolio management activity using an entirely
modern and open source approach. This year we submitted a proposal under Challenge 2 of the EU Datathon 2022 (Theme: Transparency in Public Procurement) that aims to integrate procurement data with environmental impact data. We have just learned that we have been preselected to enter the formal stage of the competition and would love to hear from the community about tangible use cases, challenges or any other input as we develop equinox further

Philippos Papadopoulos's picture #Energy
Wouter Mulders, Communications Coordinator at Drift, posted

Gratis proefcollege Reflexief Monitoren

Featured image

Als je werkt aan transitie-vraagstukken rondom mobiliteit, energie of circulaire economie, dan kom je veel onzekerheid en controverse tegen. Zie jij ook de noodzaak voor lerend werken? En loop je er ook tegenaan dat jouw organisatie maar beperkte invloed heeft om oplossingen te realiseren?

De methode 'Reflexief Monitoren' helpt hierbij. Omdat je in transitie-opgaven altijd te maken hebt met onverwachte obstakels en kansen, wordt vaak pas tijdens het proces duidelijk wat écht belangrijk is. Dat maakt het lastig om op voorhand te bepalen wat en hoe je moet doen en monitoren. Reflexieve monitoring helpt je het accent van je transitiewerk te verleggen naar leren en bijsturen, gericht op structurele verandering

Op 23 juni 2022 van 09:30-10:30 bieden we je in dit gratis proefcollege de gelegenheid om een indruk te krijgen van de methode ‘Reflexive Monitoring in Action’ en kennis te maken met je potentiële medecursisten, onder leiding van kerndocent en transitie-expert PJBeers (DRIFT & HAS).

Wouter Mulders's picture Lecture / presentation on Jun 23rd
Jan Duffhues, Lead Spatial Data & Design at City of Amsterdam: Department of Planning and Sustainability, posted

Amsterdam’s energy communities are driving a democratised energy future

In 2021, the city of Amsterdam has cooperated with citizen-led energy initiatives and The Democratic Society to bring about a decarbonised, decentralised energy future. Read the conclusions and six recommendations in the article by Kate Goodwin of the Democratic Society and Thomas de Groot of the Commons Network!

Jan Duffhues's picture #Energy
Amsterdam Smart City, Connector of opportunities at Amsterdam Smart City, posted

Energie besparen voor organisaties: Zet jij ook de knop om?

Featured image

Samen energie besparen. Samen impact maken.

Het is oorlog in Oekraïne. Een oorlog die deels gefinancierd wordt met de opbrengst van de verkoop van fossiele brandstoffen aan het Westen – dus ook aan Nederland. Ruim 15% van het gas dat we verbruiken in Nederland komt uit Rusland. Als we samen een aantal eenvoudige besparingsstappen zetten, maken we ons energie-onafhankelijker. Benieuw hoe jouw organisatie minder last van de hoge energieprijzen kan hebben en haar duurzame doelen sneller bereikt?

Volg deze zes eenvoudige stappen om energie te besparen

[1] Naar huis? Lichten uit.
Onze energierekening stijgt, we moeten nu minder afhankelijk worden van gas uit Rusland én we willen klimaatverandering tegengaan. Doe voor je het kantoor verlaat alle lichten en computers uit. Het helpt! #zetookdeknopom

[2] Mag het een graadje minder?
Onze energierekening stijgt, we moeten nu minder afhankelijk worden van gas uit Rusland én we willen klimaatverandering tegengaan. Zet de verwarming op kantoor op max. 19 graden een draag een trui. Echt, dat graadje minder helpt! #zetookdeknopom

[3] Koel en verwarm in proportie
Onze energierekening stijgt, we moeten nu minder afhankelijk worden van gas uit Rusland én we willen klimaatverandering tegengaan. Moet de koeling niet veel te hard draaien voor de grootte van de ruimte en de temperatuur buiten? Check en pas het aan. #zetookdeknopom

[4] Druk de ECO-knop in
Onze energierekening stijgt, we moeten nu minder afhankelijk worden van gas uit Rusland én we willen klimaatverandering tegengaan. Druk op de spaarstand in van de vaatwasser en elektrische apparatuur, zet energiebesparing aan op je laptop en kijk eens naar het power management van je dataservers. Check en pas het aan. #zetookdeknopom

[5] Wek je eigen energie op
Onze energierekening stijgt, we moeten nu minder afhankelijk worden van gas uit Rusland én we willen klimaatverandering tegengaan. Plaats zonnepanelen boven op het dak van jouw kantoor of vraag jouw verhuurder om het te doen. #zetookdeknopom

[6] Pak wat vaker de fiets
Onze energierekening stijgt, we moeten nu minder afhankelijk worden van gas uit Rusland én we willen klimaatverandering tegengaan. Wat jij kunt doen? Laat je auto staan en pak wat vaker de fiets. Trappen helpt, ook voor je gezondheid! #zetookdeknopom

Meer doen?

  • Spread the word. Laat zien wat jouw organisatie doet om energie te besparen. Deel deze campagne én jouw acties op social media en websites.
  • Besparen is verplicht. Grotere organisaties zijn verplicht om maatregelen te nemen waarvan vaststaat dat ze binnen 5 jaar terug te verdienen zijn. Dit zijn ook handige lijstjes voor kleinere organisaties: handhaaf de wet – tussen kolen & Parijs (urgenda.nl)  En kijk bij https://www.zetookdeknopom.nl/bedrijven.
  • Bespaar ook thuis. Ook thuis kan je tegengas geven door energie te besparen. Kijk voor meer ideeën op https://www.zetookdeknopom.nl/.

Meer initiatieven

Om het doel van 15% minder gas te halen in 2022 zullen er meer campagnes en ondersteuning komen voor bewoners en bedrijven van een aantal samenwerkende partijen in de Metropoolregio Amsterdam (met o.a. Amsterdam Economic Board, Duurzaamheidsraad Amsterdam, gemeente Amsterdam, Green Business Club, Metropoolregio Amsterdam, 02025).

Amsterdam Smart City's picture #Energy
Amsterdam Smart City, Connector of opportunities at Amsterdam Smart City, posted

GESLOTEN: Gezocht: Programmamedewerker Energie & Circulair Amsterdam Smart City (24 – 28 uur per week)

Featured image

Weet jij als geen ander mensen te verbinden en te inspireren? Wil jij bijdragen aan het versnellen van de transities op het gebied van mobiliteit, energie, circulaire economie en digitalisering? Kom dan het Amsterdam Smart City team versterken.

Voor ons kernteam (bestaande uit 5 mensen) zijn wij per direct op zoek naar een nieuw teamlid Programmamedewerker Energie & Circulair (24 -28 uur per week).

Wie zijn wij?
Amsterdam Smart City is een onafhankelijk innovatieplatform dat innovatieve bedrijven, kennisinstellingen, maatschappelijke organisaties, overheden en proactieve bewoners samenbrengt en de stad van de toekomst vormgeeft.

Dit doen wij met een netwerk van 27 partners die werken aan een betere, duurzame en toekomstbestendige wereld. Daarnaast hebben we een internationale community van meer dan 8000 pioniers en innovatie professionals die elkaar op de verschillende thema’s ontmoeten en verder helpen. Door al deze partijen te verbinden, en met hen het gesprek te voeren over de grote uitdagingen in onze regio, komen we tot innovatieve oplossingen die bijdragen aan betere straten, buurten en steden.

Wij zijn ervan overtuigd dat de veranderingen die nodig zijn voor de vooruitgang van de stad en regio alleen gerealiseerd kunnen worden door samen te werken. Onze activiteiten zijn daarom gericht op het faciliteren van deze samenwerking, zodat partijen samen tastbare en duurzame innovaties tot stand kunnen brengen. Amsterdam Smart City richt zich met name op vier transitieopgaves: mobiliteit, de digitale stad, energie en circulaire economie.

Wat ga je doen?
Binnen het Amsterdam Smart City netwerk krijg jij glansrol in het realiseren van innovatie samenwerkingen. Dit doe je zowel als verbinder als aanjager. Als verbinder breng je onze diverse partners samen op verschillende onderwerpen binnen de thema’s Energie en Circulair. Je haalt op wat er speelt en probeert de behoeften, knelpunten, lopende initiatieven en potentiële oplossingen te vertalen tot een gezamenlijk en gedragen vraagstuk.

Vervolgens help jij als aanjager de partners verder om hier samen mee aan de slag te gaan. Daarvoor organiseer je verschillende soorten bijeenkomsten met onze partners, en mogelijk andere partijen. Deze bijeenkomsten stellen hen in staat om het vraagstuk stapsgewijs op te lossen. Jij ondersteunt het proces, mede vanuit je inhoudelijke kennis, zodanig dat de samenwerking daadwerkelijk tot concrete gezamenlijke resultaten leidt. Denk hierbij aan een innovatieve pilot, een onderzoek, een participatie traject of een reeks kennisbijeenkomsten waar de partners vervolgens mee verder gaan.

Taken

  • Je onderhoudt en bouwt een netwerk van partners binnen de thema’s energie en circulaire economie; 
  • Je verbindt, mobiliseert en activeert partners, communityleden en andere relevante stakeholders. Soms ook internationaal; 
  • Je organiseert co-creatie sessies, workshops, en andere fysieke en online events die de partners in staat stellen om op complexe vraagstukken samen te werken; 
  • Je helpt het team in hun voortgang op andere transitieopgaves, events en programmaonderdelen; 
  • Je helpt bij de doorontwikkeling van onze innovatie-instrumenten en -processen om tot samenwerking te komen; 
  • Je maakt inhoudelijke kennis en resultaten zoveel mogelijk zichtbaar, samen met het team.

Wie ben jij?
Wij zoeken een collega met een nieuwsgierige, onderzoekende instelling die anderen aanzet tot nadenken en actie. Gedreven in het creëren van maatschappelijke waarde en een echte aanpakkers mentaliteit. Iemand die in staat is de ideeën, kennis en ervaring van individuele partijen samen te brengen tot een geheel waar men gezamenlijk op voort kan bouwen.

Profiel

  • Opleiding of ervaring binnen tenminste een van de thema’s of binnen stedelijke innovatie in algemene zin; 
  • Kennis van samenwerkingsprocessen en innovatiemethodieken; 
  • Ervaring met het organiseren van bijeenkomsten en/of werksessies;
  • Enthousiaste, open en bevlogen gesprekspartner; 
  • Uitstekende beheersing van de Nederlandse en Engelse taal in woord en geschrift;
  • Enkele jaren werkervaring; 
  • WO/HBO werk- en denkniveau; 
  • Een netwerk binnen ons werkveld is een pre!

Wat bieden wij?
Wij bieden je een fijne werkplek op het Marineterrein in Amsterdam, met een informele en collegiale sfeer. We zijn een klein team waar we nauw met elkaar samenwerken.

Je wordt deel van een enorm divers en dynamisch netwerk bestaande uit koplopers en pioniers op het gebied van stedelijke innovatie binnen diverse toonaangevende organisaties in de Metropoolregio Amsterdam. Je krijgt een kijkje in de keuken bij talloze duurzame en innovatieve initiatieven en programma’s.

Daarnaast bieden wij:

  • Een functie per direct voor 24 -28 uur per week;
  • Een jaarcontract met uitzicht op verlenging; 
  • Salarisindicatie: max € 4.388 bruto per maand (o.b.v. 40 uur); aangevuld met vakantie- en eindejaarstoeslag

Interesse gewekt?
Ben je enthousiast? Dan horen we graag van je! Stuur je cv en een korte motivatie voor 12 mei naar: info@amsterdamsmartcity.com.  De gesprekken vinden plaats op 16 en 17 mei. Voor meer informatie over de functie kan je contact opnemen met Sophie via sophie@amsterdamsmartcity.com of 06-36347785. Hopelijk spreken we elkaar snel!

Amsterdam Smart City's picture #CircularCity
Herman van den Bosch, professor in management development , posted

New e-book: Kennisdossier Zonne-energie

Featured image

I updated and put together 75 posts and articles about the energy transition in a new e-book (in Dutch) 'Kennisdossier Zonne-energie' (120 pages). If you interested, download it for free with the link below.

Herman van den Bosch's picture #Energy
Amsterdam Smart City, Connector of opportunities at Amsterdam Smart City, posted

The challenges in the circular energy transition

Featured image

The energy transition is in full swing. Besides manpower, it requires a lot of materials, products and infrastructure. Windmills, solar panels, batteries and water pumps contribute fully to this transition, but are still hardly purchased, produced or reused in a circular manner. With the global economy changing  and the shortages of raw materials growing, it’s important to look at the materials we use in the energy transition. How can we limit the negative impact of these materials needed for the energy transition?

It's clear that this question is on the minds of several partners. For example, at the Transition Days 2021, the Province of North Holland suggested that a knowledge agenda should be drawn up. In the meantime, our partners AMS Institute and the City of Amsterdam have started a project aimed at the reuse of solar panels in Amsterdam-Southeast and linked this with social issues. Next to that, the companies Pontiflex and Cenex Netherlands (in collaboration with the University of Applied Sciences) are focusing on the reuse of wind turbine components in new bridge structures and EV batteries.

On March 17, Amsterdam Smart City organized a work session during the Demoday Circular & Energy so our partners could discuss their input and vision on the importance of a circular energy transition. Some think it's important to have an ''integrated approach to circularity and energy'', others seek further ''stimulus that enables circular reuse of materials''. But if we want to scale up the energy transition circularly, what obstacles and opportunities do we see together? The challenges and obstacles are mapped for the different physical products via the digital tool Miro. Check out the English version of the Miro board here.

The key challenges raised by the participants:
1. Not all procurement procedures allow for circular material use or are limited to steel and concrete. Or requirements and criteria do not match.
2. Local and regional logistics in relation to transport and labor costs.
3. The business case: often a low financial return and therefore less attractive to the market. Practice shows that to be able to experiment, subsidy or other funding is needed.
4. Laws, regulations and certification of circular products stand in the way. Often the same norms and standards must be applied as for new products.
5. Education to encourage a new generation of students to work more with biobased and circular materials in projects

Now that the obstacles are visible, the challenge is to find a common approach. Through a follow-up session, Amsterdam Smart City will invite the partners again to think about the next steps. In the end we need each other to take the circular energy transition one step further.

If you have any thoughts on this topic or have a related question for us, please let us know in the comments or send an email to francien@amsterdamsmartcity.com.

Amsterdam Smart City's picture #Energy
Herman van den Bosch, professor in management development , posted

Smart grids: where social and digital innovation meet

Featured image

The 20th episode of the Better Cities - The contribution of digital technology-series is about electrification, as part of climate adaptation. Based on this theme, both the role of digital technology and the relationship between digital and social innovation will be illustrated.

The Dutch government has dug deep into its pockets to get citizens and companies to cover their roofs with solar panels and to encourage the construction of solar meadows. Favorable tax facilities have been created and a generous so-called ‘salderingsregeling’ has been set up, and with success.

Solar energy and grid overload

Most citizens are very satisfied with solar panels and their impact on the energy bill. So far, no audit office has checked what the government pays for a kilowatt hour of electricity that citizens produce on their roofs. This includes the costs of the aforementioned (tax) facilities and subsidies, as well as the billions in investments in grid reinforcement resulting from the large-scale (re)delivery to the grid of decentral generated energy. In fact, when there is more supply than demand for electricity on the grid, the wholesale price of electricity is negative. In that case, thanks to the ‘salderingsregeling’, the electricity company pays back the full amount and also has to pay(!) companies that buy electricity at that time!

And now? Now the government suffers the consequences and is limiting the growth in the number of solar panels. Many requests for the large-scale generation of solar energy are waiting for a license because the electricity grid in large parts of the Netherlands is overloaded.

There are three ways to solve this problem. The first is to increase the capacity of the high-voltage grid. The second is large-scale storage of electricity, both for the short and the long term. The third is network management. The least elegant solution here is curtailment which means that the capacity of all solar meadows and wind farms is only used for 70%. A better alternative is the construction of smart grids; this is what this article is about. Smart grids have more to do with digitization than with extra cables. *A smart grid is an energy system in which PV panels, electric cars, heat pumps, household appliances, large but also small-scale storage systems and substations are intelligently connected.*However, more attention to energy storage is desperately needed too and high-voltage grid reinforcement will also be inevitable locally.

From centralized to decentralized electricity supply

Electricity infrastructure around the world is designed for centralized electricity generation, characterized by one-way traffic from producer to consumer. Now that many consumers have also become producers ('prosumers') and solar meadows and wind farms are being developed in many places in addition to the usual power plants, the network structure of the future must be decentralized. It will consist of two or three levels. Together, these will ensure a stable system in which much more electricity is used than today. This new structure is at the forefront of development. In 2016, approximately $47 billion was spent worldwide on infrastructure and software to make the electricity system more flexible, integrate renewable energy and better serve customers. The book Promoting Digital Innovations to Advance Clean Energy System (2018) is an excellent overview of these developments. This book can here be downloaded for free.

Most prosumers supply an average of 65% of the generated electricity back to the main grid. Own storage capacity is part of the solution and creates a mini grid that significantly reduces the need to supply back. Otherwise, there are times when the main grid benefits from supplying back locally generated power. Therefore, the next step is for main and mini grids to communicate with each other. In this case we speak of a smart grid: The management of energy production in large-scale power stations (including wind and solar parks) will then take place in conjunction with the regulation of the inflow and outflow of electricity from the main grid to the mini grids. This may also include signals to households to charge or discharge batteries, turn on the boiler, postpone charging the car or stop the production of energy. An automated monitoring and control system is a necessary enabler here.

The exchange of data between mini grids and the main grid has many privacy aspects, especially if the grid operator can influence what goes on 'behind the meter'. An intermediate layer between main and mini grids offers a solution. We then speak of a microgrid. This is a kind of switch between the main grid and the micro grid, that enables the micro grid even to function autonomously in the event of a failure of the main grid.

microgrid contains three elements:

1. Installation(s) for local energy production for more than one user (usually a neighborhood): solar panels, wind turbines, cogeneration, heat pump(s), biomass power station, hydropower turbine and possibly an emergency production system (generator).

2. A storage system: home and neighborhood batteries and in the future also supercapacitors and chemical latent heat storage.

3. A digital management system to guarantee the balance between the production of and the demand for electricity, to determine how much energy is taken from or returned to the main grid and which calculates the costs and benefits per household.

The micro-grid

In a micro grid, households can exchange their surpluses and shortages of electricity without the direct intervention of the grid operator or the electricity producers. These are solely related to the surpluses and deficits of the entire microgrid, eliminating the need to interfere in the mini grids of individual households. Thanks to the real-time monitoring of electricity production and consumption, the price of electricity can be determined minute by minute. For example, the households that are part of the microgrid can agree to purchase as much electricity as possible when the price is low. At such moments, home batteries, electric cars, any neighborhood battery and boilers and hot water barrels will be charged and heated. This can be done fully automated. For example, the Powermatcher, an open-source application developed by TNO, which now employs 1000 people in the Netherlands. This video illustrates how a microgrid works.

A microgrid gains extra value if the users form an energy cooperative. Here it is possible to decide about the algorithms that regulate the circulation of the current in the microgrid. A cooperative can also take care of the management and maintenance of the solar panels of other collective facilities such as a neighborhood battery, local energy sources (wind or solar park or geothermal heat). The cooperative is also a good means of negotiating with the network operator and the energy company.

The virtual power plant

By linking heat pump technology, energy generation and energy storage at the district level, a significant step can be made with the energy transition. Here are some examples.

The Amsterdam virtual power plant
An almost classic example of a microgrid is the Amsterdam virtual power plant. Here, 50 households produce electricity with solar panels, store it in-house and trade it according to availability when the price on the energy market is most favorable.

Future Living Berlin
This is a nice small-scale practical example developed by Panasonic. Future Living Berlin consists of a neighborhood with apartment buildings for a total of 90 households. The residential buildings are equipped with 600 solar panels that, together with a collective battery system, provide a constant flow of sustainable energy. Among others, to power the seventeen central air/water heat pumps, of which two to five per residential building are installed in a cascade and provide heating and hot tap water. The shared cars and communal washing machines are good for the environment, and they also promote neighborly contact. The Internet of Things also plays a role in controlling the heat pumps. Installers maintain remote access to these systems via a cloud platform.

Tesla's Virtual Power Plant
Tesla has built a virtual power plant in Australia for 50,000 households. Every household has solar panels, with a capacity of 5 kilowatts and a Tesla Powerwall battery of 13.5 kilowatt-hours. As a result, the power station has a capacity of 250 megawatts and a storage capacity of 675 megawatt-hours. Here too, every household charges the battery and possibly the car with self-generated energy and with cheap energy if the supply is large, and they supply the energy they have left to the electricity companies at the market price. In this way the participants save 20% of the annual energy costs.

The ultimate step: autarky
Companies that want to use solar panels and supply the surplus of energy back to the grid are also increasingly encountering the capacity limitations of the main grid. The result is that an increasing number of businesses take power supply into their own hands and even completely refraining from being connected to the grid. Commercial solutions for local virtual power grids are now available, for which companies such as Alfen and Joulz are involved. One of the options is Energy-as-a-service, where the business customer does not invest in an installation but pay a fixed amount per month.

The use of blockchain

Blockchain enables exchanging surplus energy between prosumers without human intervention. Brooklyn Microgrid is a 'benefit corporation', to which every resident who has solar panels can connect and buy energy directly from or sell energy to another user (P2P), without the intervention of the electricity company. Blockchain provides a secure, transparent, and decentralized ledger of all energy production and consumption data and transactions based on 'smart contracts'. These are self-executing programs that automate the exchange of value (here, the amount of electricity) on bilaterally agreed terms. Home and neighborhood batteries, individual and collective heat pumps and charging stations for cars can also be connected to this system.

A similar pilot with blockchain is taking place in the southern German town of Wilpoldsried. Project partners Siemens, grid operator AllgäuNetz, Kempten University of Applied Sciences and the Fraunhofer Institute for Applied Information Technology (FIT) have jointly developed the platform and an app, considering the given load capacity of the grid.

Digital twins: need for oversight

Smart grids, ranging from local mini and micro grids to regional applications, are a substantial alternative to grid reinforcement. At the same time, they create new electricity flows, especially where there is a direct exchange between smart grids and the main grid. That is why there is a growing need to map these flows and regulate them where necessary. Digital twins can be helpful here.

Delft University of Technology has developed a small digital twin for a quarter of the Dutch high-voltage grid. This will gradually be expanded to encompass the entire network. To this end, the existing high-voltage hall of TU Delft will be converted into an Electrical Sustainable Power Lab, which will mirror the electricity network, including high-voltage pylons, sources of wind and solar energy, energy storage and distribution networks. This allows, for example, to simulate the effect of linking a new wind farm. As a result, it provides an overview of all bottlenecks and thus lays the foundation for better network management or the choice for grid reinforcement.

But there are also many promising developments at the local level. For that we must be in the US for the time being. The Cityzenith company, together with Arizona State University, has developed the SmartWorldOS digital twin and is making it available to Phoenix, Las Vegas and New York. Each of these cities is building a digital twin of a part of the center. The twins comprise all the buildings, transportation systems and infrastructure of the affected areas and are powered by sensors sent over a 5G network. They aggregate 3D (space) and 4D (time) data about the actual energy use and visualize and analyze it. Subsequently, the impact of other forms of lighting, heating, but also electricity generation with solar panels on the roof, on the facades and in the windows can be simulated and measured and a decision can be made about their implementation.

I have compiled a dossier on many aspects of the use of solar energy. This dossier deepens this article in several respects. Innovations in solar panels, the use of window glass to generate energy, the growth of solar energy in the Netherlands and the storage of electricity are discussed. Those who are interested can find this file by following the link below.

Herman van den Bosch's picture #Energy
Edwin Oppedijk, Communication | Media Relations at City of Amsterdam, posted

Marktconsultatie energievoorziening Amsterdam-West: de resultaten

Featured image

De stad Amsterdam groeit hard, de samenleving digitaliseert én we willen zo snel
mogelijk overstappen op duurzame energiebronnen. Deze factoren samen veroorzaken letterlijk spanningen op het elektriciteitsnet, onder andere in Amsterdam-West.

In het voorjaar van  2021 organiseerde de gemeente Amsterdam daarom samen met netbeheerder Liander een marktconsultatie. Het doel: creatieve en innovatieve ideeën ophalen om ons elektriciteitsnet zo flexibel, efficiënt en toekomstbestendig mogelijk te maken.

Hieronder vind je een greep uit de behaalde doelen en resultaten:
· Het bedrijfsleven denkt oplossingsgericht mee over de uitdagingen rondom de
elektriciteitsvoorziening
· Verkenning en inventarisatie van technieken die een bijdrage kunnen leveren aan het
versterken van ons elektriciteitsnet
· Inzicht in de laatste stand van zaken betreffende bekende technieken
· Update van actieve marktpartijen op het gebied van flexibiliteit

De volledige terugkoppeling van de marktconsultatie vind je via de link onder dit artikel.

Vervolgstap: voorbereiding aanbestedingsproject
De marktconsultatie heeft er mede toe geleid dat netbeheerder Liander voldoende kansen en mogelijkheden ziet om de uitdagingen rondom de elektriciteitsvoorziening in Amsterdam-West succesvol aan te pakken. Het bedrijf is daarom gestart met de voorbereiding van een aanbestedingstraject.

Bijeenkomst aanbesteding Westhaven
In het verzorgingsgebied van verdeelstation Westhaven is sprake van congestie. Als tijdelijke oplossing zal Liander in dit gebied congestiemanagement toepassen totdat het netwerk verzwaard is. Om bestaande en nieuwe klanten, dienstverleners en marktpartijen te informeren over het oplossen van de congestieproblematiek en de aanstaande aanbesteding, organiseert Liander een informatiebijeenkomst.

U bent welkom op woensdag 23 maart van 15-17 uur in de PRODOCK-ruimte van Port of Amsterdam (Moezelhavenweg 9, 1043 AM Amsterdam). Met vragen over de bijeenkomst kunt u terecht bij Stef Lammers (stef.lammers@alliander.com).

Edwin Oppedijk's picture #Energy
Beth Njeri, Digital Communications Manager at Metabolic, posted

Job advert: Institute Director

Featured image

Are you passionate about research and open knowledge?

If so, we're looking for a dynamic Director to lead our non-profit research entity, Metabolic Institute. You'd be guiding a fantastic team, shaping the strategy, and building strong partnerships.

Find out more about the vacancy and apply now OR should you know someone who qualifies, please do share it with them.

Beth Njeri's picture #CircularCity
Zoë Spaaij, Project manager , posted

Talkshow: 50 jaar ‘Grenzen aan de groei’ – Wat gaan we de komende 50 jaar doen?

Featured image

Op 2 maart is het 50 jaar geleden dat het rapport ‘Grenzen aan de groei’ van de club van Rome verscheen. Het rapport schetste het scenario dat als de westerse maatschappij doorging met de consumptiemaatschappij, een immense catastrofe het gevolg zou zijn. Het rapport werd de aanjager van de milieubeweging van de jaren tachtig en lijkt met de huidige klimaatverandering en biodiversiteitscrisishelaas relevanter dan ooit.

Wat kunnen we, anno 2022, leren van het rapport? Wat is er de afgelopen jaren al wel gedaan en wat moeten we nog doen? Hoe kunnen we vergroening, digitalisering en een circulaire economie inzetten om het tij te keren?
Om deze vragen te beantwoorden en een blik in het verleden en heden te werpen slaan Future City Foundation, Stichting Steenbreek en de SKBN de handen ineen tijdens een online talkshow op 2 maart van 10.00 – 11.00 uur. Mediapartner van dit Webinar is Stadszaken.nl.

Datum: 2 maart, van 10.00 – 11.00 uur
Locatie: Online talkshow onder leiding van Jan-Willem Wesselink
Kosten: Gratis

In het rapport lees je de alarmerende boodschap: “De mensheid kan niet blijven doorgaan zich met toenemende snelheid te vermenigvuldigen en materiële vooruitgang als hoofddoel te beschouwen, zonder daarbij in moeilijkheden te komen. (…) Dat betekent dat we de keuze hebben tussen nieuwe doelstellingen zoeken teneinde onze toekomst in eigen handen te nemen, of ons onderwerpen aan de onvermijdelijk wredere gevolgen van ongecontroleerde groei.”

Welke nieuwe doelstellingen kunnen we nu zoeken om ervoor te zorgen dat we onze toekomst en die van onze kinderen in eigen hand nemen? Daarover gaan we met drie experts (namen volgen z.s.m.) in gesprek.

Wilt u meer weten en meepraten?

Meld u aan

Over de Future City Foundation
De Future City Foundation is een ‘movement of communities’ die zich bezighouden met digitalisering en technologisering van regio’s, steden en dorpen. Wij verbinden professionals bij gemeenten, bedrijven en andere organisaties met elkaar om samen van die regio’s, steden en dorpen slimme gemeenschappen te maken met een gezonder leefomgeving, zoals bedoeld in Sustainable Development Goals van de Verenigde Naties en conform onze Europese democratische waarden.

Over Stichting Steenbreek
Stichting Steenbreek is een kennis- en netwerkorganisatie en biedt ondersteuning bij het duurzaam vergroenen van onze leefomgeving. De Steenbreekvisie is dat het besef dat groen goed is voor biodiversiteit, klimaatadaptatie en een fijne, aantrekkelijke leefomgeving gemeengoed wordt. En dat iedereen in Nederland, van bewoner tot bestuurder, hiernaar handelt. Bekijk de website

Over SKBN
De Stichting Kennisalliantie Bedrijventerreinen Nederland (SKBN) is al tien jaar de landelijke kennisalliantie voor de (her)ontwikkeling van toekomstbestendige bedrijventerreinen en andere werklocaties. Bekijk de website

Over Stadszaken.nl
Stadszaken.nl informeert stedelijk professionals en RO-ers over ontwikkelingen in het vakgebied met dagelijks nieuws, achtergronden, tools, inspiratie en events. Dat doen we binnen de thema’s die er nu toe doen, namelijk economie, ruimte, circulaire economie, mensen en smart cities. Stadszaken.nl publiceert iedere werkdag actuele content en daarnaast minimaal drie keer per week achtergrond-, opinie- en/ of how-to-verhalen. Dat doen we samen met een netwerk van partners en een professionele redactie, ieder met zijn eigen specialiteit. Bekijk de website

Meld u aan

Online event on Mar 2nd
Beth Njeri, Digital Communications Manager at Metabolic, posted

Living Labs

Featured image

Have you ever wondered what it would feel like to live in a fully circular and sustainable city?

Around the world, cities are testing out real-life solutions to urban challenges in small open innovation ecosystems that allow them to demonstrate circular principles in action.

Learn more about how cities are embracing experimentation.

#myfuturecity #sustainablecities #rethinkingcities

Beth Njeri's picture #CircularCity
Herman van den Bosch, professor in management development , posted

13. Ethical Principles and Applications of Digital Technology: Immersive Technology, Blockchain and Platforms

Featured image

In the 13th episode of the Better cities -The contribution of digital technology-series I will continue the description of applications of digital technology and their evaluation based on relevant ethical principles treated in episode 9. Episode 12 discussed: (1) Internet of Things, (2) robotics, and (3) biometrics. Below, I will cover (4) Immersive technology (augmented and virtual reality), (5) blockchain and (6) platforms. By way of conclusion, I return to the implications of all these applications for governance.
The ethical principles mentioned in chapter 9 are: privacy, autonomy, security, control, human dignity, justice, and power relations.

4. Immersive technology (augmented and virtual reality)

Augmented reality adds information to our perception. The oldest examples are messages that pilots of super-fast fighter planes could read on their glasses, so that they eyes without interruption could follow their "target". Its most popular application is the game Pokémon Go. Additional information via the smartphone screen is also often available when visiting 'places of interest'. The infamous Google Glasses were an excellent tool for this purpose but due to the obvious risk of privacy violations their application soon came to an end. This is unfortunate for certain groups, for example the hearing impaired.
Virtual reality goes much further by replacing our sensory perception by images of an artificial world. This requires a special helmet, such as the oculus rift. Applications mainly find their way through gaming. But it is also possible to show the interior of a house in three dimensions or to take a virtual walk through a neighborhood that is yet to be built.

A primitive form of virtual reality was Second live, in which the screen gave access to an alternative reality, in which your avatar communicates with others’. That could go a long way, like someone who reported being raped by a fellow avatar. Nowadays, the capabilities of augmented reality are expanding rapidly. Think of a virtual space where the user meets others to converse, listen, or to do whatever.

Metaverse
Augmented reality takes you to the metaverse, which was first described by Neil Stephenson in his dystopian book Snow Crash in 1992. As the power of computers grew, the idea of the metaverse gained new impetus and recently Marc Zuckerberg announced that his new company Meta Platforms will gradually turn Facebook into a fully digital world. This immerses the users in the most diverse experiences, which they partly evoke themselves, such as communicating with other avatars, attending a concert, going to the disco, and getting acquainted with strangers and of course going to shops, because it remains a medium to make money.
Only recently, Microsoft has also announced that it would bring its operating system (Windows), web servers (Azure), communication networks (Teams and Linkedin) hardware (HoloLens), entertainment (Xbox) and IP (Minecraft) together in a virtual reality. The recent €60 billion-acquisition of game producer Activision Blizzard, producer of the Call of Duty video games, fits in with this policy and indicates that the company expects to make a lot of money with its version of the metaverse.
In the expected struggle between the titans, Amazon will probably join in and build the virtual mall of and for everyone's dreams.

It remains to be seen whether a younger generation, less consumer-addicted and more concerned about nature, is waiting for a completely artificial world. I hope not.

Privacy
The risks of augmented reality have been widely mentioned from the start. For example, for research purposes, Google had been given the right to remotely track the movements of the eyes of people wearing Google glasses. For the rest, it is not only governments and companies that will spy on people, but above all people will spy on each other.

Safety
After a short time, those who move through the metaverse develop balance problems. Worse is that the risk of addiction is high.

Human dignity
There is a danger that people who frequently dwell in imaginary worlds can no longer distinguish fake and real and alienate from themselves in the 'real' world and lose the social skills that are necessary in it.

Power relations
Big Tech is getting even more tools to analyze our preferences and influence us, including through deep fakes, which can imitate existing people in real life. This raises questions about the risks that citizens run, and about the even greater role of companies that offer immersive technology.

5. Blockchain

Blockchain makes it possible to record transactions (of money, securities, contracts, and objects) without the mediation of an authorized body (government, employer, bank, notary). The first version of blockchain was bitcoin, initially only intended for financial transactions. Today, there are hundreds of variants, of which Ethereum is the most widely used.
The essence of blockchain is that the database of all transactions, the ledger, is stored on everyone's computer and is therefore accessible to every user. Miners ensure that a cryptocurrency is only used for one transaction or that a contract is not changed afterwards by one of the parties involved. Once most miners have approved a series of transactions, these transactions together form an unchangeable block.
Miners are eager to approve blocks, because whoever turns out to have done so first will receive a significant fee in cryptocurrency. Mining takes time and, above all, requires a huge amount of computing power and therefore energy. Alternative methods are diligently sought, such as a method that mainly concerns the reputation of the miner.

Blockchain stems from a drive for radical decentralization and reduction of the power of states, banks, and companies. That has worked out differently in practice. It is mainly governments and large companies in the US, Russia, China, South Korea, and the Netherlands, for example Albert Heijn, that are ensuring a steady increase.

As a means of securely storing transactions and recording mutual obligations, as in the case of digital autonomous organizations and smart contacts, blockchain has more potential than as a cryptocurrency. An absolute precondition is finding an alternative for the high consumption of energy.

Privacy
Blockchain grew out of the pursuit of escaping the ubiquitous eavesdropping enterprises and state. That is why dubious transactions are preferably handled with cryptocurrency. There is no complete anonymity, because cryptocurrency must be regularly exchanged for official money,

Autonomy
Perhaps more human autonomy comes into its own in blockchain than in any other system. For this it is necessary to know how it works well. This is all the truer in the case of non-financial transactions.

Safety
There are certain risks: The moment a miner has more than 50% of the computer capacity, it can completely corrupt the system. This situation is not imaginary. In 2019, there were two Chinese miners who together owned more than the half of computer capacity.

Power relations
Not much is known about the position of miners. There is a tendency towards ever-increasing concentration, which carries dangers about the sustainability of the system. As concentration increases, cryptocurrency holdings will also become increasingly skewed. After all, it is the miners who ensure the expansion of the available amount of money.

6. Digital platforms

Companies such as Amazon, Uber and Airbnb represent a new form of economic activity that has far-reaching consequences for other companies and urban life. They essentially consist of digital platforms that bring providers and consumers together.

Imagine you are in Amazon's virtual fitting room. You sit on a chair and a series of models pass by all of which exactly have your figure and size and maybe also your appearance. You can vary endlessly what they are wearing, until you have found or put together the outfit of your dreams. This can apply to all conceivable purchases, up to cars, including a driving simulator. With the push of a button, it is ordered and a few hours later the drone drops your order at your doorstep.
Digital platforms bring together a range of digital technology applications, such as Internet of Things, robotics, immersive technology, artificial intelligence and blockchain, to monitor the immense flows of goods and services.

Privacy
In the world of platforms, privacy is of little or no importance. Companies want to earn as much as possible from you and therefore collect masses of information about your behavior, preferences, and expenses. This in exchange for convenience and free gadgets such as navigation, search engines and email.

Autonomy
Some platforms are part of the sharing economy. They enable direct transactions between people and, as in the case of Airbnb, provide an unprecedented range of accommodations from which to choose.

Justice
Employees in platform companies often have poor labor conditions. For example, Uber drivers are followed, checked, and assessed all day long. In distribution centers, all remaining human actions are prescribed down to the minute.
In these companies, a large gap arises between the small inner circle of managers and technicians and the large outer circle of "contractors" that the company has nothing to do with and who have nothing to do with the company.

Power relations
These companies also contribute to widening the gap between rich and poor; the unprecedentedly large earnings go to top management and shareholders and, where possible, tax is avoided.
Platforms like Airbnb make it possible to distort competition on a large scale; the accommodations they rent out do not comply with the safety and tax rules that apply to regular companies.
The growth of platforms that have taken on monopolistic forms is the major cause of urban disruption without contributing to the costs it entails for the community.

Back to governance

In the previous articles, I have elaborated a framework for dealing with digitization in a socially responsible manner. Two lines of thought developed in this, that of the value of digital technology and that of its ethical use.

The value of digital technology
Digital technology must be given shape and content as one of the tools with which a city works towards an ecologically and socially sustainable future. To help articulate what such a future means, I introduced Kate Raworth's ideas about the donut economy. The design of a vision of the future must be a broadly supported democratic process, in which citizens also test the solution of their inclining problems against the sustainable prosperity of future generations and that of people elsewhere in the world.
The most important question when it comes to (digital) technology is therefore which (digital) technological tools contribute to the realization of a socially and ecologically sustainable city?

The ethical use of technology
In the world in which we try to realize the sustainable city of the future, digital technology is developing rapidly, in the fort place under the influence of commercial and political interests. Cities are confronted with these technologies through powerful smart city technology marketing.
The most important question for cities to ask is How do we assess available technologies from an ethical perspective.

In the government of cities, both trains of thought come together: Together, the answers to these questions can lead to the choice, design, and application of digital techniques as part of the realization of a vision for an ecologically and socially sustainable future of the city.

In the next two articles I examine how ethical principles are dealt with in practice. In the first article I will put Amsterdam in the spotlight and next, I look at how several municipalities are digitizing responsibly in the context of the Agenda stad.

The link below opens an overview of all published and future articles in this series.

Herman van den Bosch's picture #DigitalCity
Beth Njeri, Digital Communications Manager at Metabolic, posted

Systems Thinking

Featured image

“The essence of systems thinking is that you don't look at an object on its own, you consider everything that it is connected to.” Eva Gladek, founder and CEO of Metabolic.

How does systems thinking look in practice? A systems map is a good way to show how everything is interconnected and how different parts influence each other.

At Metabolic, we use systems thinking as a core strategy to advance our vision of a circular and sustainable economy. Check out how this approach delivers sustainable solutions.

#systemsthinking #consulting #circulareconomy

Beth Njeri's picture #CircularCity
Herman van den Bosch, professor in management development , posted

12. Ethical principles and applications of digital technology: Internet of things, robotics, and biometrics

Featured image

In the 12th and 13th episode of the series Better cities: The contribution of digital technology, I will use the ethical principles from the 9th episode to assess several applications of digital technology. This episode discusses: (1) Internet of Things, (2) robotics and (3) biometrics. Next week I will continue with (4) Immersive technology (augmented and virtual reality), (5) blockchain and (6) platforms.

These techniques establish reciprocal connections (cybernetic loops) between the physical and the digital world. I will describe each of them briefly, followed by comments on their ethical aspects: privacy, autonomy, security, control, human dignity, justice, and power relations, insofar relevant. The book Opwaarderen: Borgen van publieke waarden in de digitale samenleving. Rathenau Instituut 2017 proved to be valuable for this purpose. Rathenau Institute 2017.

1. Internet-of-Things

The Internet-of-Things connects objects via sensors with devices that process this data (remotely). The pedometer on the smartphone is an example of data collection on people. In time, data about everyone's health might be collected and evaluated at distance. For the time being, this mainly concerns data of objects. A well-known example is the 'smart meter'. More and more household equipment is connected to the Internet and transmits data about their use. For a long time, Samsung smart televisions had a built-in television camera and microphone with which the behavior of the viewers could be observed. Digital roommates such as Alexa and Siri are also technically able to pass on everything that is said in their environment to their bosses.

Machines, but also trains and trucks are full of sensors to monitor their functioning. Traffic is tracked with sensors of all kinds which measure among many others the quantity of exhaust gases and particulate matter. In many places in the world, people are be monitored with hundreds of thousands CCTV’s. A simple signature from American owners of a Ring doorbell is enough to pass on to the police the countenance of those who come to the front door. Orwell couldn't have imagined.

Privacy
Internet of Things makes it possible to always track every person, inside and outside the home. When it comes to collecting data in-house, the biggest problem is obscurity and lack of transparency. Digital home-law can be a solution, meaning that no device collects data unless explicit permission is given. A better solution is for manufacturers to think about why they want to collect all this data at all.
Once someone leaves the house, things get trickier. In many Dutch cities 'tracking' of mobile phones has been banned, but elsewhere a range of means is available to register everyone's (purchasing) behavior. Fortunately, legislation on this point in Europe is becoming increasingly strict.

Autonomy
The goal of constant addition of more 'gadges' to devices and selling them as 'smart' is to entice people to buy them, even if previous versions are far from worn out. Sailing is surrounded by all of persuasive techniques that affect people's free will. Facebook very deftly influences our moods through the selection of its newsfeeds. Media, advertisers, and companies should consider the desirability of taking a few steps back in this regard. For the sake of people and the environment.

Safety
Sensors in home appliances use to be poorly secured and give cybercriminals easy access to other devices. For those who want to control their devices centrally and want them to communicate with each other’s too, a closed network - a form of 'edge computing' - is a solution. Owners can then decide for themselves which data may be 'exposed', for example for alarms or for balancing the electricity network. I will come back to that in a later episode.

Control
People who, for example, control the lighting of their home via an app, are already experiencing problems when the phone battery is empty. Experience also shows that setting up a wireless system is not easy and that unwanted interferences often occur. Simply changing a lamp is no longer sufficient to solve this kinds of problems. For many people, control over their own home slips out of their hands.

Power relations
The digital component of many devices and in particular the dependence on well-configured software makes people increasingly dependent on suppliers, who at the same time are less and less able to meet the associated demand for service and support.

2. Robotics

Robotics is making its appearance at great speed. In almost every heart surgery, robotics is used to make the surgeon's movements more precise, and some operations are performed (almost) completely automatically. Robots are increasingly being used in healthcare, to support or replace healthcare providers. Also think of robots that can observe 3D and crawl through the sewage system. They help to solve or prevent leakages, or they take samples to detect sources of contaminationLeeds aims to be the first 'self-repairing city' by 2035. ‘Self-driving' cars and metro trains are other examples. Most warehouses and factories are full of robots. They are also making their appearance in households, such as vacuum cleaners or lawnmowers. Robots transmit large amounts of information and are therefore essential parts of the Internet of Things.

Privacy
Robots are often at odds with privacy 'by design'. This applies definitely to robots in healthcare. Still, such devices are valuable if patients and/or their relatives are sufficiently aware of their impact. Transparency is essential as well as trust that these devices only collect and transmit data for the purpose for which they are intended.

Autonomy
Many people find 'reversing parking' a problem and prefer to leave that to robotics. They thereby give up part of their autonomous driver skills, as the ability to park in reverse is required in various other situations. This is even more true for skills that 'self-driving' cars take over from people. Drivers will increasingly find themselves in situations where they are powerless.
At the same time, robotics is a solution in situations in which people abuse their right to self-determination, for example by speeding, the biggest causes of (fatal) accidents. A mandatory speed limiter saves untold suffering, but the 'king of the road' will not cheer for it.

Safety
Leaving operations to robots presupposes that safety is guaranteed. This will not be a problem with robotic lawnmowers, but it is with 'self-driving cars'. Added to this is the risk of hacking into software-driven devices.

Human dignity
Robots can take over boring, 'mind-numbing' dangerous and dirty work, but also work that requires a high degree of precision. Think of manufacturing of computer chips. The biggest problems lie in the potential for job takeovers, which not only has implications for employment, but can also seriously affect quality. In healthcare, people can start to feel 'reified' due to the loss of human contact. For many, daily contact with a care worker is an important instrument against loneliness.

3. Biometrics

Biometrics encompasses all techniques to identify people by body characteristics: iris, fingerprint, voice, heart rhythm, writing style and emotion. Much is expected of their combination, which is already applied in the passport. There is no escaping security in this world, so biometrics can be a good means of combating identity fraud, especially if different body characteristics are used.
In the US, the application of facial recognition is growing rapidly. In airports, people can often choose to open the security gate 'automatically’ or to stand in line for security. Incode, a San Francisco startup, reports that its digital identity recognition equipment has already been used in 140 million cases by 2021, four times as many as in all previous years combined.

Privacy
In the EU, the privacy of residents is well regulated by law. The use of data is also laid down in law. Nevertheless, everyone's personal data is stored in countless places.
Facial recognition is provoking a lot of resistance and is increasingly being banned in the public space in the US. This applies to the Netherlands as well.
Biometric technology can also protect privacy by minimization of the information: collected. For example, someone can gain access based on an iris scan, while the computer only checks whether the person concerned has authorization, without registering name.
Cyber criminals are becoming more and more adept at getting hold of personal information. Smaller organizations and sports clubs are especially targeted because of their poor security. If it is also possible to obtain documents such as an identity card, then identity fraud is lurking.

Safety
Combining different identification techniques as happens in passports, contributes to the rightful establishing someone's identity. This also makes counterfeiting of identity documents more difficult. Other less secured documents, for example driver's licenses and debit cards, can still be counterfeited or (temporarily) used after they have been stolen, making identity theft relatively easy.

Human dignity
The opposition to facial recognition isn't just about its obvious flaws; the technology will undoubtedly improve in the coming years. Much of the danger lies in the underlying software, in which bias is difficult to eliminate.
When it comes to human dignity, there is also a positive side to biometrics. Worldwide, billions of people are unable to prove who they are. India's Aadhar program is estimated to have provided an accepted form of digital identity based on biometrics to 1.1 billion people. The effect is that financial inclusion of women has increased significantly.

Justice
In many situations where biometric identification has been applied, the problem of reversed burden of proof arises. If there is a mistaken identity, the victim must prove that he is not the person the police suspect is.

To be continued next week.

The link below opens an overview of all published and future articles in this series. https://www.dropbox.com/s/vnp7b75c1segi4h/Voorlopig%20overzicht%20van%20materialen.docx?dl=0

Herman van den Bosch's picture #Energy
Karlijn de Wit, Communications at AMS Institute, posted

Scientific Conference | Reinventing the City

Featured image

From February 16 to 18, 2022 AMS Institute hosts the scientific conference "Reinventing the City". Working on urban challenges requires cooperation on a multi-stakeholder level. This is what we do as an institute, and is also the primary goal of the conference. "To share and discuss multidisciplinary insights and inspire each other to take actionable steps towards sustainable urban transformations."

The conference will bring together over 200 urban innovators ranging from scientists, policymakers, students to industry partners. We will discuss how cities can transform their systems on a metropolitan scale, to become more livable, resilient, sustainable and offer economic stability. Don't miss out on this amazing event, and register now.

This is event is hosted by AMS Institute in collaborations with the City of Amsterdam.

Karlijn de Wit's picture Conference from Feb 16th to Feb 18th
Herman van den Bosch, professor in management development , posted

Ethical principles and artificial intelligence

Featured image

In the 11th episode of the series Better cities: The contribution of digital technology, I will apply the ethical principles from episode 9 to the design and use of artificial intelligence.

Before, I will briefly summarize the main features of artificial intelligence, such as big data, algorithms, deep-learning, and machine learning. For those who want to know more: Radical technologies by Adam Greenfield (2017) is a very readable introduction, also regarding technologies such as blockchain, augmented and virtual reality, Internet of Things, and robotics, which will be discussed in next episodes.

Artificial intelligence

Artificial intelligence has valuable applications but also gross forms of abuse. Valuable, for example, is the use of artificial intelligence in the layout of houses and neighborhoods, taking into account ease of use, views and sunlight with AI technology from Spacemaker or measuring the noise in the center of Genk using Nokia's Scene Analytics technology. It is reprehensible how the police in the US discriminate against population groups with programs such as PredPol and how the Dutch government has dealt in the so called ‘toelagenaffaire’.

Algorithms
Thanks to artificial intelligence, a computer can independently recognize patterns. Recognizing patterns as such is nothing new. This has long been possible with computer programs written for that purpose. For example, to distinguish images of dogs and cats, a programmer created an "if....then" description of all relevant characteristics of dogs and cats that enabled a computer to distinguish between pictures of the two animal species. The number of errors depended on the level of detail of the program. When it comes to more types of animals and animals that have been photographed from different angles, making such a program is very complicated. In that case, a computer can be trained to distinguish relevant patterns itself. In this case we speak of artificial intelligence. People still play an important role in this. This role consists in the first place in writing an instruction - an algorithm - and then in the composition of a training set, a selection of a large number of examples, for example of animals that are labeled as dog or cat and if necessary lion tiger and more . The computer then searches 'itself' for associated characteristics. If there are still too many errors, new images will be added.

Deep learning
The way in which the animals are depicted can vary endlessly, whereby it is no longer about their characteristics, but about shadow effect, movement, position of the camera or the nature of the movement, in the case of moving images. The biggest challenge is to teach the computer to take these contextual characteristics into account as well. This is done through the imitation of the neural networks. Image recognition takes place just like in our brains thanks to distinguishing layers, varying from distinguishing simple lines, patterns, and colors to differences in sharpness. Because of this layering, we speak of 'deep learning'. This obviously involves large data sets and a lot of computing power, but it is also a labor-intensive process.

Unsupervised learning
Learning how to apply algorithms under supervision produces reliable results and the instructor can still explain the result after many iterations. As the situation becomes more complicated and different processes are proceeding at the same time, guided instruction is not feasible any longer. For example, if animals attack each other, surviving or not, and the computer must predict which kind of animals have the best chance of survival under which conditions. Also think of the patterns that the computer of a car must be able to distinguish to be able to drive safely on of the almost unlimited variation, supervised learning no longer works.

In the case of unsupervised learning, the computer is fed with data from many millions of realistic situations, in the case of cars recordings of traffic situations and the way the drivers reacted to them. Here we can rightly speak of 'big data' and 'machine learning', although these terms are often used more broadly. For example, the car's computer 'learns' how and when it must stay within the lanes, can pass, how pedestrians, bicycles or other 'objects' can be avoided, what traffic signs mean and what the corresponding action is. Tesla’s still pass all this data on to a data center, which distills patterns from it that regularly update the 'autopilots' of the whole fleet. In the long run, every Tesla, anywhere in the world, should recognize every imaginable pattern, respond correctly and thus guarantee the highest possible level of safety. This is apparently not the case yet and Tesla's 'autopilot' may therefore not be used without the presence of a driver 'in control'. Nobody knows by what criteria a Tesla's algorithms work.

Unsupervised learning is also applied when it comes to the prediction of (tax) fraud, the chance that certain people will 'make a mistake' or in which places the risk of a crime is greatest at a certain moment. But also, in the assessment of applicants and the allocation of housing. For all these purposes, the value of artificial intelligence is overestimated. Here too, the 'decisions' that a computer make are a 'black box'. Partly for this reason, it is difficult, if not impossible, to trace and correct any errors afterwards. This is one of the problems with the infamous ‘toelagenaffaire’.

The cybernetic loop
Algorithmic decision-making is part of a new digital wave, characterized by a 'cybernetic loop' of measuring (collecting data), profiling (analyzing data) and intervening (applying data). These aspects are also reflected in every decision-making process, but the parties involved, politicians and representatives of the people make conscious choices step by step, while the entire process is now partly a black box.

The role of ethical principles

Meanwhile, concerns are growing about ignoring ethical principles using artificial intelligence. This applies to near all principles that are discussed in the 9th episode: violation of privacy, discrimination, lack of transparency and abuse of power resulting in great (partly unintentional) suffering, risks to the security of critical infrastructure, the erosion of human intelligence and undermining of trust in society. It is therefore necessary to formulate guidelines that align the application of artificial intelligence again with these ethical principles.

An interesting impetus to this end is given in the publication of the Institute of Electric and Electronic EngineersEthically Aligned Design: A Vision for Prioritizing Human Well-being with Autonomous and Intelligent Systems. The Rathenau Institute has also published several guidelines in various publications.

The main guidelines that can be distilled from these and other publications are:

1. Placing responsibility for the impact of the use of artificial intelligence on both those who make decisions about its application (political, organizational, or corporate leadership) and the developers. This responsibility concerns the systems used as well as the quality, accuracy, completeness, and representativeness of the data.

2. Prevent designers from (unknowingly) using their own standards when instructing learning processes. Teams with a diversity of backgrounds are a good way to prevent this.

3. To be able to trace back 'decisions' by computer systems to the algorithms used, to understand their operation and to be able to explain them.

4. To be able to scientifically substantiate the model that underlies the algorithm and the choice of data.

5. Manually verifying 'decisions' that have a negative impact on the data subject.

6. Excluding all forms of bias in the content of datasets, the application of algorithms and the handling of outcomes.

7. Accountability for the legal basis of the combination of datasets.

8. Determine whether the calculation aims to minimize false positives or false negatives.

9. Personal feedback to clients in case of lack of clarity in computerized ‘decisions’.

10. Applying the principles of proportionality and subsidiarity, which means determining on a case-by-case basis whether the benefits of using artificial intelligence outweigh the risks.

11. Prohibiting applications of artificial intelligence that pose a high risk of violating ethical principles, such as facial recognition, persuasive techniques and deep-fake techniques.

12. Revocation of legal provisions if it appears that they cannot be enforced in a transparent manner due to their complexity or vagueness.

The third, fourth and fifth directives must be seen in conjunction. I explain why below.

The scientific by-pass of algorithmic decision making

When using machine learning, computers themselves adapt and extend the algorithms and combine data from different data sets. As a result, the final ‘decisions’ made by the computer cannot be explained. This is only acceptable after it has been proven that these decisions are 'flawless', for example because, in the case of 'self-driving' cars, if they turn out to be many times safer than ordinary cars, which - by the way - is not the case yet.

Unfortunately, this was not the case too in the ‘toelagenaffaire’. The fourth guideline could have provided a solution. Scientific design-oriented research can be used to reconstruct the steps of a decision-making process to determine who is entitled to receive an allowance. By applying this decision tree to a sufficiently large sample of cases, the (degree of) correctness of the computer's 'decisions' can be verified. If this is indeed the case, then the criteria used in the manual calculation may be used to explain the processes in the computer's 'black box'. If there are too many deviations, then the computer calculation must be rejected at all.

Governance

In the US, the use of algorithms in the public sector has come in a bad light, especially because of the facial recognition practices that will be discussed in the next episode. The city of New York has therefore appointed an algorithm manager, who investigates whether the algorithms used comply with ethical and legal rules. KPMG has a supervisory role in Amsterdam. In other municipalities, we see that role more and more often fulfilled by an ethics committee.

In the European public domain, steps have already been taken to combat excesses of algorithmic decision-making. The General Data Protection Regulation (GDPR), which came into effect in 2018, has significantly improved privacy protection. In April 2019, the European High Level Expert Group on AI published ethical guidelines for the application of artificial intelligence. In February 2020, the European Commission also established such guidelines, including in the White Paper on Artificial Intelligence and an AI regulation. The government also adopted the national digitization strategy, the Strategic Action Plan for AI and the policy letter on AI, human rights, and public values.

I realize that binding governments and their executive bodies to ethical principles is grist to the mill for those who flout those principles. Therefore, the search for the legitimate use of artificial intelligence to detect crime, violations or abuse of subsidies and many other applications continues to deserve broad support.

Follow the link below to find one of the previous episodes or see which episodes are next, and this one for the Dutch version.

Herman van den Bosch's picture #DigitalCity
Jacob Froling, Klimaat en Energietransitie; opleiden en trainen van jong top talent , posted

Jonge talenten maken het verschil

Featured image

De jeugd heeft de toekomst en wil een bijdrage leveren aan een duurzamere maatschappij. Ze snappen dat een integrale aanpak en vergaande samenwerking tussen overheden en organisaties uit de energiesector, mobiliteit, gebouwde omgeving en  industrie nodig is om de doelen uit het Klimaatakkoord te realiseren.

Binnen het Nationale Energietraineeship werkt op dit moment een groep jonge ambitieuze talenten iedere vrijdag samen aan projecten. Ze leren op deze manier over grenzen kijken, grenzen van organisaties, grenzen van rollen en functies, hun eigen grenzen. Samen vormen ze een netwerk over de gehele keten.

Hier vind u een overzicht van de projecten waar ze mee bezig zijn. Wilt u een talentvolle trainee inzetten op uw eigen projecten? Kijk dan verder!

Jacob Froling's picture #Energy
Herman van den Bosch, professor in management development , posted

Digital technology and the urban sustainability agenda. A frame

Featured image

The eighth episode in the series Better cities - The contribution of digital technology provides a frame to seamlessly integrate the contribution of (digital) technology into urban policy. The Dutch versions of this and already published posts are here.

From the very first publication on smart cities (1992) to the present day, the solution of urban problems has been mentioned as a motive for the application of (digital) technology. However, this relationship is anything but obvious. Think of the discriminatory effect of the use of artificial intelligence by the police in the US – to which I will come back later – and of the misery it has caused in the allowance affair (toelagenaffaire) in the Netherlands.

The choice and application of (digital) technology is therefore part of a careful and democratic process, in which priorities are set and resources are weighed up. See also the article by Jan-Willem Wesselink and Hans DekkerSmart city enhances quality of life and puts citizen first (p.15). Below, I propose a frame for such a process, on which I will built in the next five posts.

My proposal is an iterative process in which three clusters of activities can be distinguished:
• Developing a vision of the city
• The development and choice of objectives
• The instrumentation of the objectives

Vision of the city

The starting point for a democratic urban policy is a broadly supported vision of the city and its development. Citizens and other stakeholders must be able to identify with this vision and their voice must have been heard. The vision of the city is the result of a multitude of opposing or abrasive insights, wishes and interests. Balancing the power differences between parties involved is a precondition for making the city more just, inclusive, and democratic and the residents happier.

The concept of a donut economy is the best framework I know of for developing a vision of such a city. It has been elaborated by British economist Kate Raworth in a report entitled A Safe and Just Space for Humanity. The report takes the simultaneous application of social and environmental sustainability as principles for policy.

If you look at a doughnut, you see a small circle in the middle and a larger circle on the outside. The small circle represents 12 principles of social sustainability (basic needs). These principles are in line with the UN's development goals. The larger circle represents 9 principles of the earth’ long-term self-sustaining capacity. A table with both types of principles can be viewed here. Human activities in cities must not overshoot its ecological ceiling, thus harming the self-sustainable capacity of that entity. At the same time, these activities must not shortfall the social foundation of that city, harming its long-term well-being. Between both circles, a safe and just space for humanity - now and in the future - is created. These principles relate to both the city itself and its impact on the rest of the world. Based on these principles, the city can determine in which areas it falls short; think of housing, gender equality and it overshoots the ecological ceiling, for instance, in case of greenhouse gas emissions.

Amsterdam went through this process, together with Kate Raworth. During interactive sessions, a city donut has been created. Citizens from seven different neighborhoods, civil servants and politicians took part in this. The Amsterdam city donut is worth exploring closely.

The urban donut provides a broad vision of urban development, in particular because of the reference to both social and ecological principles and its global footprint. The first version is certainly no final version. It is obvious how Amsterdam has struggled with the description of the impact of the international dimension.

The formulation of desired objectives

Politicians and citizens will mention the most important bottlenecks within their city, even without the city donut. For Amsterdam these are themes like the waste problem, the climate transition, reduction of car use, affordable housing, and inclusion. The Amsterdam donut invites to look at these problems from multiple perspectives: A wide range of social implications, the ecological impact, and the international dimension. This lays the foundation for the formulation of objectives.

Five steps can be distinguished in the formulation of objectives:
• Determine where the most important bottlenecks are located for each of the selected themes, partly based on the city donut (problem analysis), for example insufficient greenery in the neighborhoods.
• Collect data on the existing situation about these bottlenecks. For example, the fact that working-class neighborhoods have four times fewer trees per hectare than middle-class neighborhoods.
• Make provisional choices about the desired improvement of these bottlenecks. For example, doubling the number of trees in five years.
• Formulate the way in which the gap between existing and desired situation can be bridged. For example, replacing parking spaces with trees or facade vegetation.
• Formulate (provisional) objectives.

This process also takes place together with stakeholders. More than 100 people were involved in the development of the circular economy plans in Amsterdam, mainly representatives of the municipalities, companies, and knowledge institutions.

Prioritizing objectives and their instrumentation

Given the provisional objectives, the search can begin for available and desirable resources, varying from information, legal measures, reorganization to (digital) techniques. The expected effectiveness, desired coherence, acceptability, and costs must be considered. With this knowledge, the goals can be formulated definitively and prioritized. It is also desirable to distinguish a short-term and long-term perspective to enable the development of innovative solutions.

The inventory, selection and ethical assessment of resources and the related fine-tuning of the objectives is best done in the first instance by teams representing different disciplines, including expertise in the field of digital technology, followed of course by democratic sanctioning.

My preference is to transfer the instrumentation process to an 'Urban Development and Innovation Department', modeled on the Majors Office of New Urban Mechanics (MONUM) in Boston. Changing teams can be put together from this office, which is strongly branched out with the other departments. In this way, the coherence between the individual goals and action points and the input of scientific research can be safeguarded. According to Ben Green, the author of the book The smart enough city and who has worked in MONUM for years, it has been shown time and again that the effect of technological innovation is enhanced when it is combined with other forms of innovation, such as social innovation.

From vision to action points: Overview

Below I give an overview of the most important building blocks for arriving at a vision and developing action points based on this vision:

1. The process from vision to action points is both linear and iterative. Distinguishing between the phases of vision development, formulating objectives and instrumentation is useful, but these phases influence each other mutually and eventually form a networked process.

2. Urban problems are always complicated, full of internal contradictions and complex. There are therefore seldom single solutions.

3. The mayor (and therefore not a separate alderman) is primarily responsible for coherence within the policy agenda, including the use of (digital) technology. This preferably translates into the structure of the municipal organization, for example an 'Urban Development and Innovation Department'.

4. Formulating a vision, objectives and their instrumentation is part of a democratic process. Both elected representatives and stakeholders play an important role in this.

5. Because of their complexity and coherence, the content of the policy agenda usually transcends the direct interests of the stakeholders, but they must experience that their problems are being addressed too.

6. Ultimately, each city chooses a series of related actions to arrive at an effective, efficient, and supported solution to its problems. The choice of these actions, especially when it comes to (digital) techniques, can always be explained as a function of the addressing problems.

7. The use of technology fits seamlessly into the urban agenda, instead of (re)framing problems to match tempting technologies.

8. Implementation is at least as important as grand plans, but without a vision, concrete plans lose their legitimacy and support.

9. In the search for support for solutions and the implementation of plans, there is collaboration with stakeholders, and they can be given the authority and resources to tackle problems and experiment themselves (‘right to challenge’).

10. In many urban problems, addressing the harmful effects of previously used technologies (varying from greenhouse gas emissions, air pollution to diseases of affluence) is a necessary starting point.

Back to digital technology

(Digital) technology is here to stay and it is developing at a rapid pace. Sometimes you wish it would slow down. It is very regrettable that not democratically elected governments, but Big Tech is the driving force behind the development of technology and that its development is therefore primarily motivated by commercial interests. This calls for resistance against Big Tech's monopoly and for reticence towards their products. By contrast, companies working on technological developments that support a sustainable urban agenda deserve all the support.

In my e-book Cities of the Future. Humane as a choice. Smart where that helps, I performed the exercise described in this post based on current knowledge about urban policy and urban developments. This has led to the identification of 13 themes and 75 action points, where possible with references to potentially useful technology. You can download the e-book here.

Herman van den Bosch's picture #CircularCity