Herman van den Bosch

Activity

  • 41
    Updates
  • 1
    Smarts
  • 9
    Comments
Herman van den Bosch, professor in management development , posted

This week: Start of the third part of the Better cities-series.

Featured image

In the first part of the series, I explained why digital technology 'for the good' is a challenge. The second part dealt with ethical criteria behind its responsible use. In the third part I have selected important field that will benefit from the responsible application of digital technology:
16  Abuse of artificial intelligence by the police in the US. More than bias
17  How can digital tools help residents to regain ownership of the city?
18  Will MaaS reduce the use of cars?
19  Digital tools as enablers towards a circular economy
20  Smart grids: where social and digital innovation meet
21  Risks and opportunities of digitization in healthcare
22  Two 100-city missions: Ill-considered leaps forward
23  Epilogue: Beyond the smart city

The link below enables you to open all previous episodes, also in Dutch language.

Herman van den Bosch's picture #DigitalCity
Herman van den Bosch, professor in management development , posted

City deals: Shaping collaboration between cities

Featured image

The 15th episode of the Better cities - The contribution of digital technology- series is about collaboration between Dutch cities within the City Deals in the Agenda stad en regio project.

Over the past years, the interest Dutch municipalities in digitization at urban level has increased, partly because of the initiating role of the VNG, G40, the Future City Foundation and forerunners such as Apeldoorn, Helmond, and Zwolle as well. Initially, these were small-scale and isolated projects. In this post, I'll discuss two projects that aim at scaling through collaboration.

A mission-driven approach to public sector projects

In her new book, Mission Economy, Mariana Mazzucato advocates a mission-driven approach to public sector projects at the local level in the way that a man was put on the moon. She refers at large-scale projects with a high degree of complexity, such as the energy transition, the construction of affordable housing, the well-being of the poor part of the population and the conservation of nature.

What is a mission-driven approach? At first, it includes an ambitious vision, followed by breaking down silos within the governmental organization, collaboration within the quadruple helix, and cooperation between higher and lower governments.

A mission-driven approach is appropriate for the major transitions facing the world and digitization as a part of these. The following pertains to a couple of projects that aim at such an approach. The first, Agenda city and region has been running for some time and will be dealt with extensively. The other is initiated by G40 will be discussed briefly.

Agenda stad and City deals

In Agenda city and region, cities, governments at different levels, companies, and organizations, including the VNG, G4, G40 and Platform31, work together to drive innovation in cities. The mission is summarized in SDG 11: Make cities inclusive, safe, resilient, and sustainable. The most important instrument are City Deals: collaborative ventures around a themes.

The first City Deals started in 2016, there are now 27, about half of which have been completed, but six new ones are about to start. 125 municipalities, 8 provinces, 9 ministries, 10 other government agencies, 5 water boards, more than 100 companies, 30 knowledge institutions and more than 20 other partnerships are involved. There are now 14 partnerships with municipalities outside the Netherlands.

Examples of City Deals are: Working and doing business across borders, cleantech, food on the urban agenda, local resilience against cybercrime, inner city building, the inclusive city, and smart city, that's how you do it. The latter will be discussed below.

Within a City Deal, the parties involved work together in their own way on concrete products, ranging from legislation to policy instruments. The main principles are:
- Formulating an ambition and a strategy.
- Enabling scaling through cooperation between and/or within (urban) regions.
- Realizing collaboration between public and private parties, including the central government
- Innovating by realizing new forms of problem-solving.
- Scaling up, also across national borders.

City Deals also work together and new deals are created from among them, such as ‘Smart customization', a new City Deal that arises from the existing City Deals 'Simple customization' and 'Smart city, that is how you do it'. If I had to imagine how a moonshot works, which I referred to in the introduction of this article, then Agenda city and region could be a good example.

City deal 'A smart city, this is how you do it'

The goal of this City Deal, as we read in the annual report, is to use digitization to tackle the major challenges facing Europe and the Netherlands, such as poverty, social cohesion, and insecurity, and to achieve a society in which everyone can live in freedom. 60 parties are now involved in this City Deal.

The aim is to change at least 12 processes by which regions, cities and towns are designed, organized, managed, and governed, and to make the most of the opportunities offered by digitization. The starting point is the existing practice and aimed at matching city’s demands.

The City Deal 'Smart city, this is how you do it', has 14 working groups. Each of those have chosen which a process to tackle, on the understanding that three municipalities must be prepared to test the results and can be scaled eventually. The City Deal 'A smart city, this is how you do it' has been underway for almost two years now, and the processes to be tackled have crystallized. In a few cases prototypes are ready, most are under development. Below is a brief description of the situation on November 15th, 2021. A lively description of some participants’ experience can be read in ROMmagazine, volume 39, no. 11.

1. Open urban data platform
This project is developing a procedure for tendering an open data platform, which is shareable and scalable, in which privacy and data autonomy are guaranteed and that offers sufficient precautions for cybersecurity. The result will be a step-by-step plan, in which technical questions (what it will looks like), legal questions (who is the owner) and financial questions (funding) are discussed.

2. Cookbook for effective data strategy
This project develops a procedure for the acquisition and storage of data. A 'data cookbook' has been developed that supports the collection, storage, and application of data. It offers an 11-step plan from the formulation of a measurable questions to the interpretation of the measurement results. It accentuates the importance to make explicit the assumptions behind the selection of data. The usability of the steps is tested in practice. A first concept can be found here.

3. Smart initiatives test
The aim of this project is to allow initiators (citizens, companies) to make optimal use of available public data, including those that will be provided by the DSO (digitaal stelsel omgevingswet). The DSO will provide information about which rules apply at a specific location and ultimately also about the quality of the physical living environment itself. Ideally, the ‘smart initiatives test’ will collect and optimize all data needed for a plan. The project group is currently investigating which types of (geo) data users need most ('usercases').

4. Sensor data and privacy
The aim of the project is to develop a tool that allows a municipality to tender for the installation of sensors that exactly match the type of data that will be collected and that consider ethical questions and GDPR rules.

5. Design of the new city
The growing availability of various types of (real-time) data, for example about air quality and noise pollution) has implications for the way in which cities and neighborhoods are developed. The working group is developing a canvas that functions as a ‘translator' of available data. The starting point for its development was a matrix with as inputs the phases of the design process (initiative, design and realization phase) and the area type (urban, Randstad and suburban area). This matrix must indicate which data is needed at what time. The usability will be tested through pilots.

6. Everyone (and everything) a sensor
Citizen measurement initiatives (via telephones and with sensors attached to bicycles, cars, and homes) have a double goal: to increase citizen’s involvement and to improve the insight into living environment of those who execute the measurement. It can also contribute to behavioral change, especially if the measurements match the needs of residents and they are also involved in the interpretation of the results. The working group is striving for a roadmap based on several user cases.

7. Local measurement: comparing projects
Measuring data locally – as was done in the previous project – may be redundant if data from elsewhere is available. In that case, comparability is required with data being searched for and standardization is needed to enable such a comparison. However, standardization can lead to mistrust and remove the incentive for resident groups to get started themselves. Ultimately, the working group opts for the development of a self-service portal, which will be developed together with the Healthy Urban Living Data and Knowledge Hub. Resident groups can then choose for themselves to participate in a standardized project that reads their measurement results directly or for a 'do-it-yourself' solution. A manual will be written for this last option.

Both projects are being further developed in collaboration with Eurocities, a network of 190 cities in 38 countries, under the name CitiMeasure - using citizen measurement to create smart, sustainable and inclusive cities.

8. Smart mobility: Towards a safe and sustainable city
Digitization in traffic has already taken off, for example by intelligent traffic systems (IVRIs), but usually the existing situation, for example private use of cars, is the starting point. The question is how to connect to the pursuit of a better quality of life. To this end, the working group has chosen three themes: better accessibility for emergency services, shared mobility, and city logistics.
A step-by-step plan is being developed for emergency services, with which municipalities can realize the necessary facilities to always priorize emergency vehicles – and possibly other target groups as well.
If everyone were to travel with the most suitable means of transport at that time (varying from walking, (shared) bicycle or scooter, public transport to (shared) car, private car use would decrease considerably and thus improve the quality of city live. Additionally, the working group is developing a 'map' to encourage shared mobility, which provides answers to all related questions.
Developments in city logistics are already taking place via other routes. Therefore, the contribution of the working group in this regard will be limited.

9. A business model for the smart city
New forms of collaboration between governments, the business community, knowledge institutions and citizens can result in new 'values' for areas, but also to the need to allocate costs and benefits in a different way. A new 'business model' may then be necessary. To this end, the working group is investigating the consequences for companies and organizations of entering partnerships for the successful development of products and services. This compared to more traditional client/contractor relationships.

10 Ethical Boards
Within the City Deal 'A smart city, this is how you do it', a rule is that digital instruments to be developed always comply with ethical principles. The implications of such principles are often situational. That is why municipalities are setting up an 'ethical board', which includes experts and residents. To support its work, the committee wants to create a knowledge platform that informs which ethical principles or tools suit best for different digitization projects.

11 Model Acquisition
Local authorities want to regulate the use of digital tools such as sensors in public spaces. Anita Nijboer, who works as a lawyer at Kennedy Van der Laan, who is also a partner of the City Deal 'Smart city, this is how you do it', has drawn up a model regulation for this purpose, which has already been tested in Rotterdam and Helmond. The most important learning effect is that departments within a municipality have fundamentally different view of the way in which these types of questions should be legally framed. In response to this, the working group is examining the question of whether a model regulation is an appropriate answer to obtaining consent for the use of digital tools.

12 Dealing with crowds in the city
Measuring (too large) crowds in parts of the city was a problem long before corona times. The aim is to develop a digital model ('digital twin') of the city - a so-called crowd safety manager - that provides real-time insight into pedestrian flows and concentrations. Such a model must also be able to communicate with people in the city. A prototype of a dashboard, developed by partner company Argaleo, is now being used in 's-Hertogenbosch, Breda and The Hague. This instrument does not use any personal data. It is being further developed at European level with external subsidies.

The instruments to be developed and existing instruments have been brought together via a website, the Toolbox. Other City Deals also develop knowledge, which is far from being systematically documented. That is why the best way to distribute this knowledge is investigated together with the Knowledge Lab for Urbanism.

G40: Smart sustainable urbanization

In March 2021, G40, the umbrella organization of 40 medium-sized municipalities, submitted a project proposal to promote digitalization and thus also create opportunities to the business community.

The project plan rejects the current approach of 'smart urbanization' and the realization of 'main social tasks'. Decentralization, broadening of tasks, narrowing of implementation funds and a fragmented central government policy have led to an impeding control gap and financing deficit in municipalities. Instead, a bundled approach is wanted, led by representatives of municipalities and central government, and the latter is being asked to invest € 1 billion.

When studying this plan, I was surprised by the absence of any reference to the activities of Agenda city and regioand the City Deals. Instead, one wonders whether Agenda city and region is the subject of criticism of the fragmented approach and G40 wants to get rid of it.
The strength of Agenda city and region is the cross connections between urban projects of all kinds, the involvement of citizens and intermunicipal cooperation. This is something to cherish.

In my opinion, G40 would be better off by ushering in a new phase of Agenda city and region, characterized by economies of scale and acceleration of the findings so far. The aims of this new phase could be consolidation of the cohesion between the themes of the individual City Deals within the framework of the major transitions facing the Netherlands. The theme of digitization thrives best in this context. After all, the ultimate value of digitization lies in the contribution to the energy transition, the reduction of traffic nuisance and the growth of a circular economy, to name a few examples. However, that requires a different plan.

In the meantime, I hope that in the foreseeable future we will be able to see the results of the working groups of the City Deal 'Smart city, this is how you do it', together with those of the other 'Deals'.

Follow the link below to find one of the previous episodes or see which episodes are next, and this one for the Dutch version.

Herman van den Bosch's picture #DigitalCity
Herman van den Bosch, professor in management development , posted

A closer look at Amsterdam's digitization agenda

Featured image

A link to a larger reproduction is here.

In the 14th episode of the Better cities - The contribution of digital technology-series, I investigate the digitization policy of the municipality of Amsterdam based on the guidelines and ethical principles formulated earlier.

Digitalization policy

25 years ago, Amsterdam Digital City was a frontrunner in access to public internet. Now the city wants to lead the way as a free, inclusive, and creative digital city. How the municipality wants to do this is described for the first time in the memorandum A digital city for and by everyone (2019). A year later in the Digital City Agenda (2020), the goals have been reformulated into three spearheads: (1) responsible use of data and technology (2) combating digital inequality and (3) the accessibility of services. These three spearheads resulted in a series of concrete activities, of which a first evaluation was submitted to the municipal council in 2021. 'Protecting digital rights' has been added to the three spearheads. The illustration above is mentioning the four spearheads and the 22 activities.

This article is looking closer at Amsterdam’s digitalization policy by examining how it relates to the guidelines and ethical principles for digitization, which I compiled in the 9th edition. Because of the overlap, I have merged these into one list (see HERE), named Principles for socially responsible digitization policy. This list contains eight principles, each accompanied by a non-exhaustive set of guidelines. For each of these principles, I examine what Amsterdam has achieved until now. The numbers after the principles below refer to one or more of the 22 activities mentioned above. I add an example from outside Amsterdam to each principle.

1. Embedding (1, 4)

The digital agenda is part of a democratically established and coherent urban agenda.
• The Municipality of Amsterdam is building a broad knowledge network in the field of responsible use of data and digital technology together with AMS Institute, Amsterdam University of Applied Sciences, Waag Society, and others. This network will conduct research into the impact of technology on the city.

In 2017, the Foresight Lublin 2050 project was launched in the Polish city of Lublin to define opportunities and threats related to socio-economic, environmental, and technological development. Its mission is that decisions about technology should be made based on the real needs of residents and should be involved in the design and implementation of policies. As part of the democratic nature of decision-making in Lublin, residents determine the allocation of budget resources.

2. Equality, inclusiveness, and social impact (16, 17, 19, 20)

Making information and communication technology accessible to everyone
• The Municipality of Amsterdam is making public services accessible, understandable, and usable for everyone, online and offline. Research among low-literate target groups has provided clues to reach these goals.
• The Online Implementation Agenda provides information about current policy (volg.amsterdam.nl). Mijn Amsterdamprovides information about neighborhood-level projects and opportunities to participate in them.
• Vulnerable citizens will find hardware to use the Internet in several places and free Wi-Fi is also available. Several thousand laptops have been distributed.
• The development of digital skills is supported together with social partners. For example, a 'train-the-trainer' program has been carried out with Cybersoek and the Public Library will introduce all visitors in the coming years to the themes of data literacy and digital freedom.
• Through the partnership with TechConnect 50,000 extra people from underrepresented groups are made aware of the technology labor market.
• The municipality considers the roll-out of the 5G network desirable but is following critical research into the health risks of this network. The 5G Field lab is used to study the applications of 5G and their importance for residents.

Barcelona and Madrid are forerunners regarding of digital participation, thanks to their resp. networks Decide and Decide Madrid. Residents use these networks on a large scale as a source of information and to participate in discussions and (advisory) voting. Much of what the city council discusses came up through these forums.

3. Justice (2, 15, 20)

Prevent that the application of digital systems results in concentration and abuse of power.
• The Amsterdam Intelligence Agenda sets conditions for algorithms to prevent discrimination. Partly in this context, several algorithms will be audited annually, and algorithms will be placed in a register.
• The Civic AI Lab will explore the (unintended) implications of algorithms related to unequal treatment and discrimination.
• An exploration of the best way to provide low-threshold access has been launched for the domains of care and education.

With its 116-page Strategy for the ethical use of artificial intelligence (AI), New York focuses on using AI to better serve residents, building AI know-how within government, modernizing data infrastructure, city policy on AI, developing partnerships with external organizations and promoting equal opportunities.

4. Human Dignity (20)

Prevent technology from alienating people from their unique qualities and instead ensure that it stimulates their fulfillment.
• The 'Modere overheid’ program investigates how digitization can support different domains of the municipal organization. Examples are better matching of job seekers and work, helping 18-year-olds manage their finances, (early) identification of people with debts, providing information about cleaning and management of the city.

The Database of ‘Affordable Housing Listings, Information, and Applications’ allows San Francisco residents to search the entire range of affordable housing and express their interest through a simple, multi-lingual form. A candidate resident is selected from the submitted applications by drawing lots, who then submits a more detailed application. The procedure has been developed entirely in open-source software and other cities are joining this initiative.

5. Autonomy and privacy (3, 5, 6, 14, 15)

Recognition of human autonomy and the right to reside and move in public space without being observed digitally
• The municipality has established a data strategy that gives residents more control over their own data.
• The municipality works with other municipalities on data minimization via the IRMA app. Via this app residents can pass on damage reports. In the future, this app can form the basis for making available a digital identity to all citizens.
• The Responsible Sensing Lab investigates privacy-friendly methods to collect data in a responsible way using sensing. The mmWave sensor, for example, measures crowds without collecting personal data.
• A register maps installed sensors. A sensor regulation will make it mandatory to register sensors in the public space.

To protect residents' privacy, Seattle's government has taken a series of steps that make the city an undisputed frontrunner in this regard. The city has appointed a chief privacy officer, established a set of guiding privacy principles, and established a privacy advisory committee composed of both citizens and government officials. An important part is the implementation of a privacy impact assessment every time the municipality develops a new project in which personal data is collected.

6. Open data, open software, and interoperability (9, 13, 18)

Data architecture, including standards, agreements and norms aimed at reusing data, programs and technology and preventing lock-in.
• The municipal policy regarding open data is 'open, unless. The urban platform data.amsterdam.nl attracts 2500 unique visitors per day.
• The municipality's sourcing and open-source strategy establishes the reuse of existing resources, the use of standards and the availability of software developed by the municipality.
• Together with knowledge institutions and companies, the municipality is developing the Amsterdam Data Exchange, in which the parties involved regulate which data they exchange. Agreements have been made with the Central Dutch Statistics Office (CBS) about making data available.
• The Tada principles are the starting points for responsible data use. They regulate the authority of the users and determine the use of data and that it is open and transparent. It is envisaged that other Amsterdam institutions and companies will also adopt these principles.
• Residents can view their personal data via My Amsterdam. This also applies to entrepreneurs.

To support startups, the Seoul City Council has developed My Neighborhood Analysis, a tool that contains an unprecedented amount of commercial information. This includes datasets from Seoul's entire business ecosystem, such as business licenses, ownership information, rental rates, and transportation ticket data. When users enter information about the proposed business type, they get an overview of business performance in the neighborhood to be explored and an indication of the expected level of risk for a new business. Users can select peer companies to understand their historical performance.

7. Safety (7, 9)

Preventing and combating internet crime and limiting its consequences.
• The municipality has drawn up a Digital Safety Agenda, partly aimed at keeping vital infrastructure in operation.

The municipality of The Hague has developed an IoT security monitor together with Cybersprint. It provides a real-time overview of all connected IoT devices within the city limits with detailed information such as their whereabouts and level of risk. The monitor has so far identified 3100 unsafe devices in The Hague. Usually, insecure devices don't use password or default passwords or outdated software.

8. Operational and Financial Sustainability (12, 20, 21)

Guaranteeing a reliable, robust Internet
• The municipality is in permanent consultation with the Internet and telephone providers to guarantee the stability of the networks.

Rolling out the fiber digital infrastructure accounts for 90% of the total cost. A "Dig Once" policy aims to reduce these costs through collaboration with stakeholders. In the case of new construction, the aim is to carry out all cable and pipeline work in one go, preferably by constructing a small, easily accessible tunnel under the sidewalk or street. This considerably increases the operational reliability of all (digital) facilities. With existing buildings, all maintenance and replacement work should be carried out in one go too.

Challenges

As can be expected, various bottlenecks arise in the implementation of the digital policy in Amsterdam. After all, this is a fast process involving many parties and interests, while technological developments are rapid. A lot of work still must be done in several areas gain support, both within the municipal apparatus, and with companies, organizations and inhabitants. This includes the Tada principles, compliance with the municipal sourcing strategy, the 'open unless' policy and the data minimization policy. There is also work to be done to develop a reliable digital infrastructure and to counteract (unintended) effects when using artificial intelligence. Increasing digital self-reliance and creating the preconditions for all residents to participate digitally requires structural embedding and financing.

Without doubt, the municipality of Amsterdam is energetically digitizing in a responsible manner. The city has a clear picture of the problems it faces and the direction of their solution. For me, as an outside-observer, it is less clear when, in the opinion of the municipality, the policy has been successfully implemented. Actions are taking place regarding each of the eight principles that I have drawn up, but they are not yet a coherent whole. This also applies to other cities too, but some of them are more advanced in certain areas, such as the digital participation of residents of Barcelona, Madrid, Lublin, the privacy policy of Seattle, the provision of information in Seoul and the ethically responsible use of AI in New York. Milou Jansen coordinator of the Cities Coalition for Digital Rights says about this strategy: New York's AI Strategy is a bold and inspiring example of how digital rights can find its way into the operationalization of AI policies. It shows the way forward to many other cities around the globe who likewise support an approach grounded in digital rights.

In my opinion, the municipality of Amsterdam has made great strides in the field of privacy (5) and open data (6). The biggest challenges are in the following areas (the numbers refer to the principles formulated by me):
• Embedding of the digitization policy in the other policy areas (1).
• Availability of Internet, computers, and digital skills for vulnerable groups (2).
• Use of digital means to increase the participation of the population in policy development and formulation (2).
• Conditions of workers in the gig economy (3).
• Oversight of the AI systems that make autonomous judgments about people (4).
• Fight against cybercrime (7).
• Future-proof infrastructure (8).

In the next episode I will shift the focus to digitizing activities of other Dutch municipalities.

The link below opens a preliminary overview of the already published and upcoming articles in the series Better cities: the contribution of digital technology. Click HERE for the Dutch version.

Herman van den Bosch's picture #DigitalCity
Herman van den Bosch, professor in management development , posted

13. Ethical Principles and Applications of Digital Technology: Immersive Technology, Blockchain and Platforms

Featured image

In the 13th episode of the Better cities -The contribution of digital technology-series I will continue the description of applications of digital technology and their evaluation based on relevant ethical principles treated in episode 9. Episode 12 discussed: (1) Internet of Things, (2) robotics, and (3) biometrics. Below, I will cover (4) Immersive technology (augmented and virtual reality), (5) blockchain and (6) platforms. By way of conclusion, I return to the implications of all these applications for governance.
The ethical principles mentioned in chapter 9 are: privacy, autonomy, security, control, human dignity, justice, and power relations.

4. Immersive technology (augmented and virtual reality)

Augmented reality adds information to our perception. The oldest examples are messages that pilots of super-fast fighter planes could read on their glasses, so that they eyes without interruption could follow their "target". Its most popular application is the game Pokémon Go. Additional information via the smartphone screen is also often available when visiting 'places of interest'. The infamous Google Glasses were an excellent tool for this purpose but due to the obvious risk of privacy violations their application soon came to an end. This is unfortunate for certain groups, for example the hearing impaired.
Virtual reality goes much further by replacing our sensory perception by images of an artificial world. This requires a special helmet, such as the oculus rift. Applications mainly find their way through gaming. But it is also possible to show the interior of a house in three dimensions or to take a virtual walk through a neighborhood that is yet to be built.

A primitive form of virtual reality was Second live, in which the screen gave access to an alternative reality, in which your avatar communicates with others’. That could go a long way, like someone who reported being raped by a fellow avatar. Nowadays, the capabilities of augmented reality are expanding rapidly. Think of a virtual space where the user meets others to converse, listen, or to do whatever.

Metaverse
Augmented reality takes you to the metaverse, which was first described by Neil Stephenson in his dystopian book Snow Crash in 1992. As the power of computers grew, the idea of the metaverse gained new impetus and recently Marc Zuckerberg announced that his new company Meta Platforms will gradually turn Facebook into a fully digital world. This immerses the users in the most diverse experiences, which they partly evoke themselves, such as communicating with other avatars, attending a concert, going to the disco, and getting acquainted with strangers and of course going to shops, because it remains a medium to make money.
Only recently, Microsoft has also announced that it would bring its operating system (Windows), web servers (Azure), communication networks (Teams and Linkedin) hardware (HoloLens), entertainment (Xbox) and IP (Minecraft) together in a virtual reality. The recent €60 billion-acquisition of game producer Activision Blizzard, producer of the Call of Duty video games, fits in with this policy and indicates that the company expects to make a lot of money with its version of the metaverse.
In the expected struggle between the titans, Amazon will probably join in and build the virtual mall of and for everyone's dreams.

It remains to be seen whether a younger generation, less consumer-addicted and more concerned about nature, is waiting for a completely artificial world. I hope not.

Privacy
The risks of augmented reality have been widely mentioned from the start. For example, for research purposes, Google had been given the right to remotely track the movements of the eyes of people wearing Google glasses. For the rest, it is not only governments and companies that will spy on people, but above all people will spy on each other.

Safety
After a short time, those who move through the metaverse develop balance problems. Worse is that the risk of addiction is high.

Human dignity
There is a danger that people who frequently dwell in imaginary worlds can no longer distinguish fake and real and alienate from themselves in the 'real' world and lose the social skills that are necessary in it.

Power relations
Big Tech is getting even more tools to analyze our preferences and influence us, including through deep fakes, which can imitate existing people in real life. This raises questions about the risks that citizens run, and about the even greater role of companies that offer immersive technology.

5. Blockchain

Blockchain makes it possible to record transactions (of money, securities, contracts, and objects) without the mediation of an authorized body (government, employer, bank, notary). The first version of blockchain was bitcoin, initially only intended for financial transactions. Today, there are hundreds of variants, of which Ethereum is the most widely used.
The essence of blockchain is that the database of all transactions, the ledger, is stored on everyone's computer and is therefore accessible to every user. Miners ensure that a cryptocurrency is only used for one transaction or that a contract is not changed afterwards by one of the parties involved. Once most miners have approved a series of transactions, these transactions together form an unchangeable block.
Miners are eager to approve blocks, because whoever turns out to have done so first will receive a significant fee in cryptocurrency. Mining takes time and, above all, requires a huge amount of computing power and therefore energy. Alternative methods are diligently sought, such as a method that mainly concerns the reputation of the miner.

Blockchain stems from a drive for radical decentralization and reduction of the power of states, banks, and companies. That has worked out differently in practice. It is mainly governments and large companies in the US, Russia, China, South Korea, and the Netherlands, for example Albert Heijn, that are ensuring a steady increase.

As a means of securely storing transactions and recording mutual obligations, as in the case of digital autonomous organizations and smart contacts, blockchain has more potential than as a cryptocurrency. An absolute precondition is finding an alternative for the high consumption of energy.

Privacy
Blockchain grew out of the pursuit of escaping the ubiquitous eavesdropping enterprises and state. That is why dubious transactions are preferably handled with cryptocurrency. There is no complete anonymity, because cryptocurrency must be regularly exchanged for official money,

Autonomy
Perhaps more human autonomy comes into its own in blockchain than in any other system. For this it is necessary to know how it works well. This is all the truer in the case of non-financial transactions.

Safety
There are certain risks: The moment a miner has more than 50% of the computer capacity, it can completely corrupt the system. This situation is not imaginary. In 2019, there were two Chinese miners who together owned more than the half of computer capacity.

Power relations
Not much is known about the position of miners. There is a tendency towards ever-increasing concentration, which carries dangers about the sustainability of the system. As concentration increases, cryptocurrency holdings will also become increasingly skewed. After all, it is the miners who ensure the expansion of the available amount of money.

6. Digital platforms

Companies such as Amazon, Uber and Airbnb represent a new form of economic activity that has far-reaching consequences for other companies and urban life. They essentially consist of digital platforms that bring providers and consumers together.

Imagine you are in Amazon's virtual fitting room. You sit on a chair and a series of models pass by all of which exactly have your figure and size and maybe also your appearance. You can vary endlessly what they are wearing, until you have found or put together the outfit of your dreams. This can apply to all conceivable purchases, up to cars, including a driving simulator. With the push of a button, it is ordered and a few hours later the drone drops your order at your doorstep.
Digital platforms bring together a range of digital technology applications, such as Internet of Things, robotics, immersive technology, artificial intelligence and blockchain, to monitor the immense flows of goods and services.

Privacy
In the world of platforms, privacy is of little or no importance. Companies want to earn as much as possible from you and therefore collect masses of information about your behavior, preferences, and expenses. This in exchange for convenience and free gadgets such as navigation, search engines and email.

Autonomy
Some platforms are part of the sharing economy. They enable direct transactions between people and, as in the case of Airbnb, provide an unprecedented range of accommodations from which to choose.

Justice
Employees in platform companies often have poor labor conditions. For example, Uber drivers are followed, checked, and assessed all day long. In distribution centers, all remaining human actions are prescribed down to the minute.
In these companies, a large gap arises between the small inner circle of managers and technicians and the large outer circle of "contractors" that the company has nothing to do with and who have nothing to do with the company.

Power relations
These companies also contribute to widening the gap between rich and poor; the unprecedentedly large earnings go to top management and shareholders and, where possible, tax is avoided.
Platforms like Airbnb make it possible to distort competition on a large scale; the accommodations they rent out do not comply with the safety and tax rules that apply to regular companies.
The growth of platforms that have taken on monopolistic forms is the major cause of urban disruption without contributing to the costs it entails for the community.

Back to governance

In the previous articles, I have elaborated a framework for dealing with digitization in a socially responsible manner. Two lines of thought developed in this, that of the value of digital technology and that of its ethical use.

The value of digital technology
Digital technology must be given shape and content as one of the tools with which a city works towards an ecologically and socially sustainable future. To help articulate what such a future means, I introduced Kate Raworth's ideas about the donut economy. The design of a vision of the future must be a broadly supported democratic process, in which citizens also test the solution of their inclining problems against the sustainable prosperity of future generations and that of people elsewhere in the world.
The most important question when it comes to (digital) technology is therefore which (digital) technological tools contribute to the realization of a socially and ecologically sustainable city?

The ethical use of technology
In the world in which we try to realize the sustainable city of the future, digital technology is developing rapidly, in the fort place under the influence of commercial and political interests. Cities are confronted with these technologies through powerful smart city technology marketing.
The most important question for cities to ask is How do we assess available technologies from an ethical perspective.

In the government of cities, both trains of thought come together: Together, the answers to these questions can lead to the choice, design, and application of digital techniques as part of the realization of a vision for an ecologically and socially sustainable future of the city.

In the next two articles I examine how ethical principles are dealt with in practice. In the first article I will put Amsterdam in the spotlight and next, I look at how several municipalities are digitizing responsibly in the context of the Agenda stad.

The link below opens an overview of all published and future articles in this series.

Herman van den Bosch's picture #DigitalCity
Herman van den Bosch, professor in management development , posted

12. Ethical principles and applications of digital technology: Internet of things, robotics, and biometrics

Featured image

In the 12th and 13th episode of the series Better cities: The contribution of digital technology, I will use the ethical principles from the 9th episode to assess several applications of digital technology. This episode discusses: (1) Internet of Things, (2) robotics and (3) biometrics. Next week I will continue with (4) Immersive technology (augmented and virtual reality), (5) blockchain and (6) platforms.

These techniques establish reciprocal connections (cybernetic loops) between the physical and the digital world. I will describe each of them briefly, followed by comments on their ethical aspects: privacy, autonomy, security, control, human dignity, justice, and power relations, insofar relevant. The book Opwaarderen: Borgen van publieke waarden in de digitale samenleving. Rathenau Instituut 2017 proved to be valuable for this purpose. Rathenau Institute 2017.

1. Internet-of-Things

The Internet-of-Things connects objects via sensors with devices that process this data (remotely). The pedometer on the smartphone is an example of data collection on people. In time, data about everyone's health might be collected and evaluated at distance. For the time being, this mainly concerns data of objects. A well-known example is the 'smart meter'. More and more household equipment is connected to the Internet and transmits data about their use. For a long time, Samsung smart televisions had a built-in television camera and microphone with which the behavior of the viewers could be observed. Digital roommates such as Alexa and Siri are also technically able to pass on everything that is said in their environment to their bosses.

Machines, but also trains and trucks are full of sensors to monitor their functioning. Traffic is tracked with sensors of all kinds which measure among many others the quantity of exhaust gases and particulate matter. In many places in the world, people are be monitored with hundreds of thousands CCTV’s. A simple signature from American owners of a Ring doorbell is enough to pass on to the police the countenance of those who come to the front door. Orwell couldn't have imagined.

Privacy
Internet of Things makes it possible to always track every person, inside and outside the home. When it comes to collecting data in-house, the biggest problem is obscurity and lack of transparency. Digital home-law can be a solution, meaning that no device collects data unless explicit permission is given. A better solution is for manufacturers to think about why they want to collect all this data at all.
Once someone leaves the house, things get trickier. In many Dutch cities 'tracking' of mobile phones has been banned, but elsewhere a range of means is available to register everyone's (purchasing) behavior. Fortunately, legislation on this point in Europe is becoming increasingly strict.

Autonomy
The goal of constant addition of more 'gadges' to devices and selling them as 'smart' is to entice people to buy them, even if previous versions are far from worn out. Sailing is surrounded by all of persuasive techniques that affect people's free will. Facebook very deftly influences our moods through the selection of its newsfeeds. Media, advertisers, and companies should consider the desirability of taking a few steps back in this regard. For the sake of people and the environment.

Safety
Sensors in home appliances use to be poorly secured and give cybercriminals easy access to other devices. For those who want to control their devices centrally and want them to communicate with each other’s too, a closed network - a form of 'edge computing' - is a solution. Owners can then decide for themselves which data may be 'exposed', for example for alarms or for balancing the electricity network. I will come back to that in a later episode.

Control
People who, for example, control the lighting of their home via an app, are already experiencing problems when the phone battery is empty. Experience also shows that setting up a wireless system is not easy and that unwanted interferences often occur. Simply changing a lamp is no longer sufficient to solve this kinds of problems. For many people, control over their own home slips out of their hands.

Power relations
The digital component of many devices and in particular the dependence on well-configured software makes people increasingly dependent on suppliers, who at the same time are less and less able to meet the associated demand for service and support.

2. Robotics

Robotics is making its appearance at great speed. In almost every heart surgery, robotics is used to make the surgeon's movements more precise, and some operations are performed (almost) completely automatically. Robots are increasingly being used in healthcare, to support or replace healthcare providers. Also think of robots that can observe 3D and crawl through the sewage system. They help to solve or prevent leakages, or they take samples to detect sources of contaminationLeeds aims to be the first 'self-repairing city' by 2035. ‘Self-driving' cars and metro trains are other examples. Most warehouses and factories are full of robots. They are also making their appearance in households, such as vacuum cleaners or lawnmowers. Robots transmit large amounts of information and are therefore essential parts of the Internet of Things.

Privacy
Robots are often at odds with privacy 'by design'. This applies definitely to robots in healthcare. Still, such devices are valuable if patients and/or their relatives are sufficiently aware of their impact. Transparency is essential as well as trust that these devices only collect and transmit data for the purpose for which they are intended.

Autonomy
Many people find 'reversing parking' a problem and prefer to leave that to robotics. They thereby give up part of their autonomous driver skills, as the ability to park in reverse is required in various other situations. This is even more true for skills that 'self-driving' cars take over from people. Drivers will increasingly find themselves in situations where they are powerless.
At the same time, robotics is a solution in situations in which people abuse their right to self-determination, for example by speeding, the biggest causes of (fatal) accidents. A mandatory speed limiter saves untold suffering, but the 'king of the road' will not cheer for it.

Safety
Leaving operations to robots presupposes that safety is guaranteed. This will not be a problem with robotic lawnmowers, but it is with 'self-driving cars'. Added to this is the risk of hacking into software-driven devices.

Human dignity
Robots can take over boring, 'mind-numbing' dangerous and dirty work, but also work that requires a high degree of precision. Think of manufacturing of computer chips. The biggest problems lie in the potential for job takeovers, which not only has implications for employment, but can also seriously affect quality. In healthcare, people can start to feel 'reified' due to the loss of human contact. For many, daily contact with a care worker is an important instrument against loneliness.

3. Biometrics

Biometrics encompasses all techniques to identify people by body characteristics: iris, fingerprint, voice, heart rhythm, writing style and emotion. Much is expected of their combination, which is already applied in the passport. There is no escaping security in this world, so biometrics can be a good means of combating identity fraud, especially if different body characteristics are used.
In the US, the application of facial recognition is growing rapidly. In airports, people can often choose to open the security gate 'automatically’ or to stand in line for security. Incode, a San Francisco startup, reports that its digital identity recognition equipment has already been used in 140 million cases by 2021, four times as many as in all previous years combined.

Privacy
In the EU, the privacy of residents is well regulated by law. The use of data is also laid down in law. Nevertheless, everyone's personal data is stored in countless places.
Facial recognition is provoking a lot of resistance and is increasingly being banned in the public space in the US. This applies to the Netherlands as well.
Biometric technology can also protect privacy by minimization of the information: collected. For example, someone can gain access based on an iris scan, while the computer only checks whether the person concerned has authorization, without registering name.
Cyber criminals are becoming more and more adept at getting hold of personal information. Smaller organizations and sports clubs are especially targeted because of their poor security. If it is also possible to obtain documents such as an identity card, then identity fraud is lurking.

Safety
Combining different identification techniques as happens in passports, contributes to the rightful establishing someone's identity. This also makes counterfeiting of identity documents more difficult. Other less secured documents, for example driver's licenses and debit cards, can still be counterfeited or (temporarily) used after they have been stolen, making identity theft relatively easy.

Human dignity
The opposition to facial recognition isn't just about its obvious flaws; the technology will undoubtedly improve in the coming years. Much of the danger lies in the underlying software, in which bias is difficult to eliminate.
When it comes to human dignity, there is also a positive side to biometrics. Worldwide, billions of people are unable to prove who they are. India's Aadhar program is estimated to have provided an accepted form of digital identity based on biometrics to 1.1 billion people. The effect is that financial inclusion of women has increased significantly.

Justice
In many situations where biometric identification has been applied, the problem of reversed burden of proof arises. If there is a mistaken identity, the victim must prove that he is not the person the police suspect is.

To be continued next week.

The link below opens an overview of all published and future articles in this series. https://www.dropbox.com/s/vnp7b75c1segi4h/Voorlopig%20overzicht%20van%20materialen.docx?dl=0

Herman van den Bosch's picture #Energy
Herman van den Bosch, professor in management development , posted

Ethical principles and artificial intelligence

Featured image

In the 11th episode of the series Better cities: The contribution of digital technology, I will apply the ethical principles from episode 9 to the design and use of artificial intelligence.

Before, I will briefly summarize the main features of artificial intelligence, such as big data, algorithms, deep-learning, and machine learning. For those who want to know more: Radical technologies by Adam Greenfield (2017) is a very readable introduction, also regarding technologies such as blockchain, augmented and virtual reality, Internet of Things, and robotics, which will be discussed in next episodes.

Artificial intelligence

Artificial intelligence has valuable applications but also gross forms of abuse. Valuable, for example, is the use of artificial intelligence in the layout of houses and neighborhoods, taking into account ease of use, views and sunlight with AI technology from Spacemaker or measuring the noise in the center of Genk using Nokia's Scene Analytics technology. It is reprehensible how the police in the US discriminate against population groups with programs such as PredPol and how the Dutch government has dealt in the so called ‘toelagenaffaire’.

Algorithms
Thanks to artificial intelligence, a computer can independently recognize patterns. Recognizing patterns as such is nothing new. This has long been possible with computer programs written for that purpose. For example, to distinguish images of dogs and cats, a programmer created an "if....then" description of all relevant characteristics of dogs and cats that enabled a computer to distinguish between pictures of the two animal species. The number of errors depended on the level of detail of the program. When it comes to more types of animals and animals that have been photographed from different angles, making such a program is very complicated. In that case, a computer can be trained to distinguish relevant patterns itself. In this case we speak of artificial intelligence. People still play an important role in this. This role consists in the first place in writing an instruction - an algorithm - and then in the composition of a training set, a selection of a large number of examples, for example of animals that are labeled as dog or cat and if necessary lion tiger and more . The computer then searches 'itself' for associated characteristics. If there are still too many errors, new images will be added.

Deep learning
The way in which the animals are depicted can vary endlessly, whereby it is no longer about their characteristics, but about shadow effect, movement, position of the camera or the nature of the movement, in the case of moving images. The biggest challenge is to teach the computer to take these contextual characteristics into account as well. This is done through the imitation of the neural networks. Image recognition takes place just like in our brains thanks to distinguishing layers, varying from distinguishing simple lines, patterns, and colors to differences in sharpness. Because of this layering, we speak of 'deep learning'. This obviously involves large data sets and a lot of computing power, but it is also a labor-intensive process.

Unsupervised learning
Learning how to apply algorithms under supervision produces reliable results and the instructor can still explain the result after many iterations. As the situation becomes more complicated and different processes are proceeding at the same time, guided instruction is not feasible any longer. For example, if animals attack each other, surviving or not, and the computer must predict which kind of animals have the best chance of survival under which conditions. Also think of the patterns that the computer of a car must be able to distinguish to be able to drive safely on of the almost unlimited variation, supervised learning no longer works.

In the case of unsupervised learning, the computer is fed with data from many millions of realistic situations, in the case of cars recordings of traffic situations and the way the drivers reacted to them. Here we can rightly speak of 'big data' and 'machine learning', although these terms are often used more broadly. For example, the car's computer 'learns' how and when it must stay within the lanes, can pass, how pedestrians, bicycles or other 'objects' can be avoided, what traffic signs mean and what the corresponding action is. Tesla’s still pass all this data on to a data center, which distills patterns from it that regularly update the 'autopilots' of the whole fleet. In the long run, every Tesla, anywhere in the world, should recognize every imaginable pattern, respond correctly and thus guarantee the highest possible level of safety. This is apparently not the case yet and Tesla's 'autopilot' may therefore not be used without the presence of a driver 'in control'. Nobody knows by what criteria a Tesla's algorithms work.

Unsupervised learning is also applied when it comes to the prediction of (tax) fraud, the chance that certain people will 'make a mistake' or in which places the risk of a crime is greatest at a certain moment. But also, in the assessment of applicants and the allocation of housing. For all these purposes, the value of artificial intelligence is overestimated. Here too, the 'decisions' that a computer make are a 'black box'. Partly for this reason, it is difficult, if not impossible, to trace and correct any errors afterwards. This is one of the problems with the infamous ‘toelagenaffaire’.

The cybernetic loop
Algorithmic decision-making is part of a new digital wave, characterized by a 'cybernetic loop' of measuring (collecting data), profiling (analyzing data) and intervening (applying data). These aspects are also reflected in every decision-making process, but the parties involved, politicians and representatives of the people make conscious choices step by step, while the entire process is now partly a black box.

The role of ethical principles

Meanwhile, concerns are growing about ignoring ethical principles using artificial intelligence. This applies to near all principles that are discussed in the 9th episode: violation of privacy, discrimination, lack of transparency and abuse of power resulting in great (partly unintentional) suffering, risks to the security of critical infrastructure, the erosion of human intelligence and undermining of trust in society. It is therefore necessary to formulate guidelines that align the application of artificial intelligence again with these ethical principles.

An interesting impetus to this end is given in the publication of the Institute of Electric and Electronic EngineersEthically Aligned Design: A Vision for Prioritizing Human Well-being with Autonomous and Intelligent Systems. The Rathenau Institute has also published several guidelines in various publications.

The main guidelines that can be distilled from these and other publications are:

1. Placing responsibility for the impact of the use of artificial intelligence on both those who make decisions about its application (political, organizational, or corporate leadership) and the developers. This responsibility concerns the systems used as well as the quality, accuracy, completeness, and representativeness of the data.

2. Prevent designers from (unknowingly) using their own standards when instructing learning processes. Teams with a diversity of backgrounds are a good way to prevent this.

3. To be able to trace back 'decisions' by computer systems to the algorithms used, to understand their operation and to be able to explain them.

4. To be able to scientifically substantiate the model that underlies the algorithm and the choice of data.

5. Manually verifying 'decisions' that have a negative impact on the data subject.

6. Excluding all forms of bias in the content of datasets, the application of algorithms and the handling of outcomes.

7. Accountability for the legal basis of the combination of datasets.

8. Determine whether the calculation aims to minimize false positives or false negatives.

9. Personal feedback to clients in case of lack of clarity in computerized ‘decisions’.

10. Applying the principles of proportionality and subsidiarity, which means determining on a case-by-case basis whether the benefits of using artificial intelligence outweigh the risks.

11. Prohibiting applications of artificial intelligence that pose a high risk of violating ethical principles, such as facial recognition, persuasive techniques and deep-fake techniques.

12. Revocation of legal provisions if it appears that they cannot be enforced in a transparent manner due to their complexity or vagueness.

The third, fourth and fifth directives must be seen in conjunction. I explain why below.

The scientific by-pass of algorithmic decision making

When using machine learning, computers themselves adapt and extend the algorithms and combine data from different data sets. As a result, the final ‘decisions’ made by the computer cannot be explained. This is only acceptable after it has been proven that these decisions are 'flawless', for example because, in the case of 'self-driving' cars, if they turn out to be many times safer than ordinary cars, which - by the way - is not the case yet.

Unfortunately, this was not the case too in the ‘toelagenaffaire’. The fourth guideline could have provided a solution. Scientific design-oriented research can be used to reconstruct the steps of a decision-making process to determine who is entitled to receive an allowance. By applying this decision tree to a sufficiently large sample of cases, the (degree of) correctness of the computer's 'decisions' can be verified. If this is indeed the case, then the criteria used in the manual calculation may be used to explain the processes in the computer's 'black box'. If there are too many deviations, then the computer calculation must be rejected at all.

Governance

In the US, the use of algorithms in the public sector has come in a bad light, especially because of the facial recognition practices that will be discussed in the next episode. The city of New York has therefore appointed an algorithm manager, who investigates whether the algorithms used comply with ethical and legal rules. KPMG has a supervisory role in Amsterdam. In other municipalities, we see that role more and more often fulfilled by an ethics committee.

In the European public domain, steps have already been taken to combat excesses of algorithmic decision-making. The General Data Protection Regulation (GDPR), which came into effect in 2018, has significantly improved privacy protection. In April 2019, the European High Level Expert Group on AI published ethical guidelines for the application of artificial intelligence. In February 2020, the European Commission also established such guidelines, including in the White Paper on Artificial Intelligence and an AI regulation. The government also adopted the national digitization strategy, the Strategic Action Plan for AI and the policy letter on AI, human rights, and public values.

I realize that binding governments and their executive bodies to ethical principles is grist to the mill for those who flout those principles. Therefore, the search for the legitimate use of artificial intelligence to detect crime, violations or abuse of subsidies and many other applications continues to deserve broad support.

Follow the link below to find one of the previous episodes or see which episodes are next, and this one for the Dutch version.

Herman van den Bosch's picture #DigitalCity